发布时间:2011-11-3 阅读量:1581 来源: 我爱方案网 作者:
随着无线通信技术的发展,各种无线通信产品随之应用到各种领域中,造成电磁环境的复杂化。要确保手机在此环境中能够正常工作且不会影响其它设备,需要对其 进行电磁兼容性测试,来保证手机的电磁兼容性能。本文针对手机电磁兼容测试中经常出现的问题,包括静电放电抗扰度试验、电快速瞬变脉冲群抗扰度试验、辐射 骚扰及传导骚扰性能测试中经常发现的问题进行了分析,并提出了相应的改善手机电磁兼容性能的建议。
1 静电放电抗扰度试验
1.1静电放电抗扰度试验常见问题
静电放电抗扰度测试中出现的问题主要表现在以下几个方面。
(1)手机通话中断。
(2)静电放电导致手机部分功能失效,但静电放电过程结束后或者重新启动手机之后失效的功能可以恢复。这些现象可能为:
(3)手机自动关机或者重新启动现象。这个问题既可能发生在通话过程中,也可能发生在待机过程中。
(4)静电放电导致手机失效或损坏。
1.2静电放电问题的具体分析
(1)通话中断:造成通话中断的主要原因是静电放电对手机内部的射频电路和/或基带电路造成影响,造成了通信信噪比的下降,信号同步出 现问题,从而造成通话中断。
结构设计不合理也可能导致通话中断。静电放电试验中需要使用较大面积的金属材质的水平耦合板,手机与水平耦合板之间仅放置一个厚度为0.5 mm的绝缘垫。当天线或者大面积的金属部件距离这个水平耦合板距离过近时,可能产生相互耦合,导致移动电话机实际能达到的灵敏度大大下降,进行静电试验时 通话更容易中断,严重时即使不施加静电干扰移动电话机都无法保持通话。
(2)自动关机或重启:基带电路的复位电路受到静电的干扰导致手机误关机或重启。
(3)手机失效或损坏:静电放电过程中高电压和高电流导致器件的热失效或者绝缘击穿。也可能受到静电放电过程中的强电磁场影响导致器件暂时失效。
(4)软件故障:静电干扰信号被当作有用信号被处理,导致操作系统误响应。
[page]
1.3静电放电问题的改进建议
(1)在设计方案上考虑静电放电问题
(2)出现静电问题后的整改建议针对上述静电放电问题,需要采取以下步骤进行整改。
a)尝试直接放电和间接放电、空气放电和接触放电,确认耦合路径;
b)从不同方向放电,观察现象有何不同,确定所有的放电点和放电路径;
c)从低到高,在不同电压下进行试验,确定手机在哪个电压范围内出现不合格现象;
d)多试验几台样机,分析共性,确认失效原因;
e)根据耦合路径、不合格现象、放电路径,判断相关的敏感器件;
f)针对敏感器件制订解决方案;
g)通过试验验证、修正解决方案。整改中具体可采用以下措施。
2 电快速瞬变脉冲群抗扰度试验
2.1电快速瞬变脉冲群抗扰度试验概述
电快速瞬变脉冲群产生的原理如下:当电感性负载(如继电器、接触器等)在断开时,由于开关触点间隙的绝缘击穿或触点弹跳等原因,在断开 处产生的瞬态骚扰。当电感性负载多次重复开关,则脉冲群又会以相应的时间间隙多次重复出现。这种瞬态骚扰能量较小,一般不会引起设备的损坏,但由于其频谱 分布较宽,所以会对移动电话机的可靠工作产生影响。
该试验是一种将由许多快速瞬变脉冲组成的脉冲群耦合到移动电话机的电源端口的试验。试验脉冲的特点是:瞬变脉冲上升时间短、重复出现、能量低。该试验的目 的就是为了检验手机在遭受这类暂态骚扰影响时的性能。一般认为电快速瞬变脉冲群之所以会造成手机的误动作,是因为脉冲群对线路中半导体结电容充电,当结电 容上的能量累积到一定程度,便会引起手机的误操作。具体表现为在测试过程中移动电话机通信中断、死机、软件告警、控制及存储功能丧失等。
2.2电快速瞬变脉冲群抗扰度试验常见问题分析
电快速瞬变脉冲波形通过充电器直接传导进手机,导致主板电路上有过大的噪声电压。当单独对火线或零线注入时,尽管是采取的对地的共模方 式注入,但在火线和零线之间存在差模干扰,这种差模电压会出现在充电器的直流输出端。当同时对火线和零线注入时,存在着共模干扰,但对充电器的输出影响并 不大。造成手机在测试过程中出现问题的原因是复杂的,具体表现为以下几方面。
2.3电快速瞬变脉冲群抗扰度试验相关问题的改进建议
针对电快速脉冲群干扰试验出现的问题,主要可以采取滤波及吸收的办法来实现对电快速瞬变脉冲的抑制。
(1)在手机设计初期就应重点考虑抑制电快速瞬变脉冲群干扰设计。
(2)元器件的选择上应使用质量可靠的芯片,最好做过芯片级的电磁兼容仿真试验,质量可靠的充电器、数据线及电池的选用可提升对电快速瞬变脉冲信号 的抑制能力;
(3)厂家在组装生产环节中应严把质量关,做好生产工艺流程控制,尽量保证产品质量的一致性,减少因个别手机质量问题带来的测试不合格现象;
(4)EFT测试过程中如出现问题,可采用在充电器增加磁环或者电快速瞬变脉冲群滤波器的方法进行整改,选用磁珠的内径越小、外径越大、长度越长越好。采 用加TVS管的整改方法作用有限;
(5)根据最新GB/T 17626.4-2008标准要求,重复频率将增加100 kHz选项,将会比5 kHz更为严酷,厂家应及早重视进行相关的电快速瞬变脉冲群测试防护工作。
3辐射骚扰及传导骚扰
3.1辐射骚扰、传导骚扰相关问题的具体情况
辐射骚扰测试主要在30 MHz-100 MHz和200 MHz-900 MHz频率范围内容易不合格,传导骚扰则体现在5 MHz-30 MHz频段范围内容易不合格。
3.2辐射骚扰传导骚扰相关问题分析
辐射骚扰与传导骚扰测试,是在使用充电器为手机充电,同时手机保持通信状态以及最大发射功率情况下,进行的电磁兼容测试。测试的结果是 手机与充电器联合工作的情况下的测试结果。不合格的原因可能是充电器造成的,也可能是手机本身造成的,也可能是手机与充电器联合工作时兼容性不好而不合 格。
产生问题的原因可能有以下几个方面。
3.3辐射骚扰传导骚扰相关问题的改进建议
(1)在设计阶段要充分考虑电磁兼容特性,合理考虑电路板的接地设计,应保持接地环路尽量小,使用网格接地,信号线或电源线尽量与地线 靠近。设计过程中,对充电器和手机的充电端口采取滤波措施,对辐射发射敏感元器件采取屏蔽措施,增加屏蔽罩。
(2)选择质量好,电磁兼容特性好的元器件。
(3)优化器件的位置、布局和布线。器件布局一直按照功能和器件类型来对元器件进行分组,例如,对既存在模拟电路、又存在数字器件的电路板,可将器件按工 作电压、频率进行分组布局;对给定的产品系列或电源电压,可按功能对器件进行分组。器件分组布局完毕后,必须根据元器件组电源电压的差别,将电源层布置在 各器件组的下方。如果有多层地,那么就必须把数字地层紧贴数字电源层,模拟地紧贴模拟电源层,模拟地和数字地要有一个共地点。通常,电路中存在A/D或D /A器件,这些转换器件同时由模拟和数字电源供电,因此要将转换器放置在模拟电源和数字电源之间。如果数字地和模拟地是分开的,它们将在转换器汇合。当电 路板按照器件系列和电源电压分组时,组内信号的传送不能跨越另外的器件组,如果信号跨过界限,就不能与其回流路径紧密耦合,这样会增大电路的环路面积,从 而使电感增加,电容减小,进而导致共模和差模干扰的增加。电路板设计过程中要避免出现各种隔离带。虽然相距很近的一排通孔并不违反设计规则,但是,在电源 层和地层上过多的通孔有时相当于开出一条隔离带,要避免在该区域内布线,例如,一个3 ns的信号回路如果偏离其信号源路径0.40英寸,则过冲/欠冲和感生串扰会大增,足以使电路工作出现异常,并同时增加差模和共模干扰。
(4)充分考虑充电器与手机的兼容性和匹配性。充电器的输出电流应大于手机的峰值电流。在选择匹配的充电器前,应使用相应的充电器配合手机进行辐射骚扰和 传导骚扰预测试,验证两者间的电磁兼容特性,选择电磁兼容特性好的充电器。
(5)后期整改措施
综上所述,对于辐射骚扰和传导骚扰,应把握以下原则:
a)注重设计阶段的电磁兼容设计;
b)注重充电器和手机的匹配;
c)选择优良的元器件。
4 结论
手机的电磁兼容性能直接关系到手机的各个性能,保证手机的电磁兼容性能是保证手机质量的一个重要环节,因此手机的电磁兼容测试及设计不容忽视。了解手机电 磁兼容测试的依据及电磁兼容测试产生的问题,并掌握相应的解决方法,有助于手机电磁兼容性能的提高。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。