发布时间:2011-10-26 阅读量:1305 来源: 发布人:
便携式医疗电子产品也常常需要充电,充电的保护也可以通过PolySwitchTM元件完成。下图就是充电器中PolySwitchTM元件的应用。虚线框内是电池组,PolySwitchTM元件在其中作充、放电过流保护。
过压保护元器件并联在被保护的电路上(见下图)。在输入电压未过压时,过压保护元器件呈高阻态,其泄漏电流甚微;一旦输入电压过压时,过压保护元器件在瞬 间提供低阻抗通路,并将电压钳位于安全的低电压,从而保护电路免受过压损害。当输入电压降落到正常工作电压时,过压保护元器件会自动恢复到高阻态。多层压敏电阻(MLV)及ESD保护元件PESD就是常用的过压保护元件。
MLV、PESD除用过压保护外,也是静电放电(ESD)保护元件。在插拔便携式产品的各种插头时,各端口很容易受到静电放电的损坏,因此插拔端口都需要加ESD保护元器件。
现在,市场上已经开始出现通过便携式医疗电子终端直接实现视频会话和虚拟诊疗的方案。对于以触摸屏为主要的人机交互界面,同时需要传输告诉的音视频信号的应用场合来说,需要在实现ESD保护的同时满足信号传输质量。在电脑、手机中使用的PESD产品也将大量应用在便携式医疗电子产品中。 PESD的抑制特性如下:
过流过压保护方面,瑞侃电子PolyZenTM元件器件是由精密齐纳二极管和聚合物正温度系数(PPTC)元件组合而成的集成电路。它是用于防止感应尖峰电压、瞬间高电压、错用电源适配器对电路产生过压、过流危害的保护器件。内部结构如下图所示。
在正常工作时,VIN输入电压高于齐纳二极管的击穿电压VZ,有IFLT电流经齐纳二极管到地,VOUT输出稳定的电压。有不正常的过压输入VIN 时,则齐纳二极管的IFLT会产生过流,当器件上有过流时,其电阻由低阻态瞬变到高阻态,使在其上的压降大增,VOUT输出基本不变,而流过齐纳二极管的 电流IFLT反而减小,如下图所示。器件上电压降的增大既保护了齐纳二极管,又保护了下游的电路。另外,若被保护的下游电路中存在有局部短路或短路故障 时,IOUT会增加,PPTC元件由低阻态变成高阻态,可使电路得到过流保护。
此外,可以用作过压保护的还包括:
变阻器:金属氧化物变阻器(MOV)是一种电压钳位元件,如电压超过阀值则其阻抗将变得非常小。MOV具有高度非线性电压阻抗(V-I)特性,反应速度快,能承受很高峰值电流,待机状态下漏 泄电流又较低。其主要应用是保护那些必须满足“瞬态电压浪涌抑制器”UL1449所列要求的产品免受雷电损害,经常会用在便携式医疗设备中。
ESD抑制器:高密度电路都很容易受到静电或ESD的侵害。因此要求许多新的电子设备必须满足IEC61000-4-2标准。静电(ESD)抑制器的聚合物结构使得制造商可生产出各种形状因子和配置的ESD抑制器,以满足各种不同应用的需要。该器件具有小于IPF的电容,可提供良好的限制信号降级和衰减的性能,以保证高速数据能正常工作。
便携式医疗电子产品大多使用电池组。随着多功能保护IC的出现,电池组设计人员也将研究重点转向采用单个多功能保护器件的安全应用。随着市场越来越多地依赖保护IC,对电路来说ESD 保护也变得非常关键。虽然IC很容易整合多种功能,但它们容易受到ESD和热过载的影响。分立二极管、多层变阻器或基于聚合物的ESD解决方案对保护IC的ESD结构进行了有效补充,提供最高至15kv的ESD保护。
除了ESD,保护IC还容易受到长时间过载条件下的热应力影响。由于IC的击穿特性,因此有可能存在一种故障模式,即电路在安全工作限制之外仍能正常工作。随着对多功能保护IC依赖的增强,保险丝保护方案仅用于冗余保护。
在降低下一代便携式应用系统成本和尺寸的设计趋势下,设计人员正致力于用多功能保护IC来替代多个分立元件。为继续保持用户期待的高级别安全性,电池组设计人员正在用多功能保护IC实现的简单电路取代功能差不多的ESD和保险丝保护。这可使设计人员在降低整体系统成本的同时,继续保持便携式医疗设备用户期待的安全保护性能。
更多相关的产品和技术信息:
对使用可充电二次电池的便携式设备来说,可以使用多种类型的充电器:降压充电器、离线充电器或者线性稳压器/充电器。最常用的类型是降压充电器。这种充电器可以把电池源电压转换为较低电压并予以稳压。转换器可通过外部交流/直流适配器或者内部适配器电路供电。线性稳压器结构紧凑,非常适用于低容量电池充电器应用。单芯片集成解决方案既可为便携式设备供电,同时还可单独对电池进行充电。
下图是小型直流/直流开关稳压器的例子(使用威世 Siliconix Si9731实现的锂离子或镍镉/镍氢微处理器电池充电器)。它可以为电池充电器提供同步脉冲开关。该脉冲电池充电系统散热小,采用TSSOP封装,高度仅1.2毫米。该器件特性丰富,其中包括可在关断时将电池(Vbat)和外部电源隔离开来。
充电器中使用的电容有多种类型。输入去耦电容用于旁路噪声。一般将0.1μF MLCC电容布置在Vcc引脚附近,用来滤除高频噪声。
输出电容类型的选择应取决于合适的ESR,以符合稳定负载线路范围,同时应进行下列项目的评估:
1. 能够降低功耗
2. 能够降低纹波电压
3. 能够满足系统负载线路的要求
转换器负责提供负载电流和电压。随着负载的变化,电流的增加,电压会下降。稳压器可以保持恒定电压,但对负载电流的变化不能迅速做出响应,所以使用大容量电容来应对这样的变化,防止电压下降。如果转换器输出的电流要通过电感,它就无法瞬时响应,这时就需要在负载两端跨接一个并联电容组,来上拉电压。有时会混合使用MLCC和钽电容,以降低总体大容量电容的ESR。由于MLCC的阻抗较低,会先充电,然后才是大容量钽电容。
便携式医疗设备使用的电池或为一次性电池,或为二次电池。一次性电池一般只使用一次。在电路工作过程中,活性化学物质被消耗殆尽。一旦放电完毕,电路将停止工作,必须更换新的电池。二次电池可以在放电完毕后充电,因为产生电能的化学反应可以逆转,从而实现对电池系统充电。电源、电池类型的选择视应用而定。医疗设备常用的一次性电池类型有碱性电池和锂电池。
二次电池有锂离子 (Li-ion) 电池、镍镉电池 (NiCad)、镍氢(NiMH) 电池和铅酸电池。其中锂离子电池最常用,这是因为锂离子电池的体积能量密度和质量能量密度最大,放电率极低,这意味着闲置时有良好的荷电保持能力。钽电容的功耗及容量范围如下:
便携式设备电路需要输出电容,而输出电容通常由一次性或者二次电池供电,可以在负载瞬变过程中减轻电压过冲或者下冲。要有效地滤除噪声,电容的等效串联电阻 (ESR) 是重点考虑的参数。输出电容用来处理电路的纹波电流和电压。需要对电容组的过热予以控制,这样在电路工作中,不会超过最大允许功耗。需要确定的是,通过输出电容的纹波电流不超出允许值。
上表概述了在+25˚C和f=100kHz条件下各种封装(按外壳尺寸划分)的最大允许额定功率。对温升在+25℃以上的应用,建议应进一步进行降额。请参考电容生产厂家关于针对可适用的钽电封装的功率降额建议。
可使用公式P=Irms2 x ESR计算出最大允许交流纹波电流 (Irms),其中P表示钽电容外壳尺寸对应的最大允许功率,ESR则可根据电容的工作频率计算得出。
对钽电容,还需要遵守合适的电压降额规范,不可超出生产厂家建议的额定值。输出电容的工作电压应由电压电路状态决定。其可根据公式 Vrated=Vpeak+Vdc计算得出,即纹波电压加上直流电压噪声。允许的纹波电压的计算方法为E=IxZ,其中Z表示电容器电阻。总体来说,较低的ESR可以帮助降低输出纹波噪声。
在电路中加入大容量电容还能在无负载条件下(此时电池尚未工作,使用线路电流供电)起到上电作用。当使用线路电流供电时,在选择大容量钽电容的额定值的时候,应遵从降额规范。
更多相关的产品和技术信息:
电容选型与应用知识系列大讲台—电容设计技巧与问答集锦
电容选型与应用知识系列大讲台—电解电容应用选型篇(一)
电容选型与应用知识系列大讲台—电解电容应用选型篇(二)
TM8系列:Vishay推出新型高可靠性固钽电容器适用于医疗电子应用
Always on Video(AOV)技术是安防行业近年来的重大突破,它基于超低功耗内存的快速启动待机技术,实现设备7×24小时全天候录像,彻底解决传统低功耗方案在事件触发间隙无录像信息的行业痛点。北京君正作为国内同时掌握CPU、VPU、ISP、AIE等核心技术的创新企业,率先在T41系列芯片上实现AOV技术商用落地,并持续迭代出T32V/T33V系列方案,构建起覆盖低、中、高三档的全方位产品布局。
美国半导体行业协会(SIA)最新数据显示,2025年4月全球半导体销售额达到570亿美元,较3月的556亿美元增长2.5%,同比2024年4月的464亿美元大幅增长22.7%。这一增长标志着2025年全球半导体市场首次实现环比正增长,展现出行业复苏的积极信号。
随着物联网(IoT)、智能家居、工业互联等领域的快速发展,低功耗蓝牙(BLE)技术成为短距离无线通信的关键支柱。北京昂瑞微电子技术股份有限公司(昂瑞微)在2025蓝牙亚洲大会上正式发布了OM6629系列新一代低功耗蓝牙射频SoC芯片,该芯片在功耗、性能、安全性和兼容性等方面实现全面升级,为智能穿戴、医疗监测、工业控制、消费电子等应用提供更高效的无线连接方案。
据Counterpoint Research最新研究显示,2024年全球平板显示器市场收入预计同比增长11%,扭转近年低迷态势。这一增长主要由电视、平板电脑及新兴车载显示三大品类拉动,其中电视面板贡献率达19%,成为核心引擎。行业分析指出,技术迭代与应用场景拓宽正推动市场进入结构性增长新阶段。
近日,中金科工业(ZJK Industrial Co., Ltd.)宣布将扩大产能,以满足英伟达专为中国市场定制的AI加速芯片B40的预期需求。该芯片基于英伟达最新的Blackwell架构,定位中高端市场,预计2025年6月进入量产阶段。