发布时间:2011-10-24 阅读量:1077 来源: 我爱方案网 作者:
消费电子、通信电子产品,如手机、数码相机、数码摄像机、PDA、MP3、PMP、P-DVD、DC、DV、NB、NetBook等必须具备一定的抗冲击 或抗跌落能力。这些产品的制造商要求其整机必须能通过1.2米或1.3米的自由跌落测试,从1.2米自由跌落至大理石地面将对整机产生大约50kg的冲击 力。如果除去外壳和印刷电路板的缓冲作用,施加到加速度计上的冲击加速度也将超过5kg。为了抵御这种冲击,制造商要求产品设计师在产品中设计缓冲系统, 并采用加速度传感器在第一时间获取跌落信息,同时在第一时间将怕震电子器件的电源关闭并予以保护,如高速旋转的硬盘、光碟、录像带等均可使它们能够快速地 进入暂停状态。为此,双轴热对流式加速度传感器则是理想的可用器件之一。
热对流式双轴加速度传感器是以虚拟的、悬浮于空中的“热气团”作为重力块。在微机械结构上没有可活动的部分,其独特的“桥式”结构牢牢地固定在硅芯片上, 而使其能够抵御大于50kg的冲击。
热对流式加速度传感器是采用MEMS技术,基于单片CMOS集成电路的制造工艺而生产出来的一个完整的加速度测量系统,就像其它加速度传感器一样有重力块 (质量块)。热对流式加速度传感器是以可移动的热对流小气团作为重力块的。通过测量,由加速度引起的内部腔体内的温度气团的位置变化来测量加速度。热对流 式加速度传感器以气态气体作为质量块,同传统的实体质量块相比,这种加速度传感器具有很大的优势,它不存在电容式传感器所存在的粘连、颗粒等问题,同时还 能抵抗50000g的冲击。这使得热对流式加速度传感器生产的合格品率大大提高,生产成本有效降低,因而使用的故障率很低。
热对流式加速度传感器的工作原理
一个被放置在芯片中央的热源在这个空腔中产生一个悬浮的“热气团”,同时四个由铝和多晶硅组成的热电耦组被等距离对称地放置在热源的四个方向。在未受到加 速度或水平放置时,其温度的下降陡度是以热源为中心而完全对称的。此时,所有的四个热电耦组均因感应温度相同而产生的电压是相同的。上面是一个空腔气室, 因无加速度的外力作用,热气团位于正中央的中央热源之上。当受到一个加速度的作用,热气团向右偏移,原来四个热电耦组的平衡被破坏,其温度的下降陡度是以 热源为中心而向右发生△的偏量。由于自由对流热场的传递性,任何方向的加速度都会扰乱热场的轮廓,从而导致其不对称,此时四个热电耦组的输出电压会出现差 异,而这热电耦组输出电压的差异是直接与所感应的加速度成比例的。在加速度传感器内部,有两条完全相同的加速度信号传输路径,一条是用于测量X轴上所感应 的加速度,另一条则是用于测量Y轴上所感应的加速度。
热对流式加速度传感器的内部还包含传感器的模拟信号后处理电路。来自同一轴、两个方向的热电耦组信号经差分放大、温度比较、模数转换、数模转换、低通滤波 和缓冲,输出已经放大了的模拟信号;或经差分放大、温度比较和模数转换,直接将信号处理成I2C 接口界面。因此,热对流式加速度传感器是一个多芯片的片上系统,即SOC或MCM。
由于热对流式加速度传感器采用MEMS技术以及基于标准的CMOS制造工艺,这使其圆片加工工序的成品率大大提高,全线成品率达到90%以上。ADI等著 名集成电路公司都已开发了这种类型的加速度传感器,如二轴的ADXL320/321,三轴的ADXL330;其它如MAS-LA/LD系列双轴加速度传感 器等。MEMS IC在中国大陆设计和生产,更具有低成本的优势,使产品更具竞争力。 热对流式加速度传感器采用5×5 ×1.55mm LCC-8封装,体积小而薄,十分适合便携式产品的应用。
2025年第一季度,中国大陆PC市场(不含平板电脑)迎来开门红,整体出货量达到890万台,同比增长12%,呈现稳健复苏态势。与此同时,平板电脑市场表现更为亮眼,出货量达870万台,同比大幅攀升19%,显示出移动计算设备的持续受欢迎。
2025年6月17日,上海——全球智能电源与感知技术领导者安森美(onsemi, NASDAQ: ON) 在第九届北京国际听力学大会上展示了革新性听力健康技术。公司凭借Ezairo系列智能音频平台,重点呈现了人工智能在可穿戴听觉设备中的前沿应用,彰显其在个性化听觉解决方案领域的创新领导力。
在AI与可穿戴设备爆发式发展的背景下,传统霍尔传感器受限于封装尺寸(普遍≥1.1×1.4mm)和功耗水平(通常>4μA),难以满足AR眼镜、智能戒指等新兴设备对空间与能效的严苛需求。艾为电子依托17年数模混合芯片设计经验,推出新一代Hyper-Hall系列霍尔传感器,通过0.8×0.8×0.5mm FCDFN封装与0.8μA工作功耗(后续型号将达0.1μA),实现体积较传统方案缩小60%,功耗降低80%。该系列支持1.1-5.5V宽电压,覆盖18-100Gs磁场阈值,提供推挽/开漏双输出模式,为微型电子设备提供底层传感支撑。
韩国科学技术院(KAIST)近期发布长达371页的技术预测报告,系统勾勒出2026至2038年高带宽内存(HBM)的发展路径。该研究基于当前技术趋势与行业研发方向,提出从HBM4到HBM8的五大代际升级框架,覆盖带宽、容量、能效及封装架构的突破性演进。
韩国媒体Business Korea最新披露,全球处理器巨头AMD日前推出的革命性AI芯片MI350系列,已确认搭载三星电子最新研发的12层堆叠HBM3E高带宽内存。这一战略性合作对三星具有里程碑意义,标志着其HBM技术在新一代AI计算平台中获得核心供应商地位。