发布时间:2011-10-14 阅读量:1788 来源: 我爱方案网 作者:
图1 IGBT的等效电路
由此可知,IGBT的安全可靠与否主要由以下因素决定:
(1)IGBT栅极与发射极之间的电压;
(2)IGBT集电极与发射极之间的电压;
(3)流过IGBT集电极-发射极的电流;
(4)IGBT的结温
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同 样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电 流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。
2 保护措施
在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。
2.1 IGBT栅极的保护
IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的 驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极 和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果 设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上电压,则IGBT就可能会损坏。为防止此类情况发生,应在IGBT的栅极与发射 极间并接一只几十kΩ的电阻,此电阻应尽量靠近栅极与发射极。如图2所示。
图2 栅极保护电路
由于IGBT是功率MOSFET和PNP双极晶体管的复合体,特别是其栅极为MOS结构,因此除了上述应有的保护之外,就像其他MOS结构器件一 样,IGBT对于静电压也是十分敏感的,故而对IGBT进行装配焊接作业时也必须注意以下事项:
(1)在需要用手接触IGBT前,应先将人体上的静电放电后再进行操作,并尽量不要接触模块的驱动端子部分,必须接触时要保证此时人体上所带的静电已全部 放掉;
(2)在焊接作业时,为了防止静电可能损坏IGBT,焊机一定要可靠地接地。
2.2 集电极与发射极间的过压保护
过电压的产生主要有两种情况,一种是施加到IGBT集电极-发射极间的直流电压过高,另一种为集电极-发射极上的浪涌电压过高。
2.2.1 直流过电压
直流过压产生的原因是由于输入交流电源或IGBT的前一级输入发生异常所致。解决的办法是在选取IGBT时,进行降额设计;另外,可在检测出这一过压时分 断IGBT的输入,保证IGBT的安全。
2.2.2 浪涌电压的保护
因为电路中分布电感的存在,加之IGBT的开关速度较高,当IGBT关断时及与之并接的反向恢复二极管逆向恢复时,就会产生很大的浪涌 电压Ldi/dt,威胁IGBT的安全。
通常IGBT的浪涌电压波形如图3所示。
图中:VCE为IGBT集电极-发射极间的电压波形;ic为IGBT的集电极电流;Ud为 输入IGBT的直流电压;VCESP=Ud+Ldic/dt,为浪涌电压峰值。
如果VCESP超出IGBT的集电极-发射极间耐压值VCES,就可能损坏IGBT。解决的办法主要有:
(1)在选取IGBT时考虑设计裕量;
(2)在电路设计时调整IGBT驱动电路的Rg,使di/dt尽可能小;
(3)尽量将电解电容靠近IGBT安装,以减小分布电感;
(4)根据情况加装缓冲保护电路,旁路高频浪涌电压
由于缓冲保护电路对IGBT的安全工作起着很重要的作用,在此将缓冲保护电路的类型和特点作一介绍。
图4 缓冲保护电路
(1)C缓冲电路如图4(a)所示,采用薄膜电容,靠近IGBT安装,其特点是电路简单,其 缺点是由分布电感及缓冲电容构成LC谐振电路,易产生电压振荡,而且IGBT开通时集电极电流较大。
(2)RC缓冲电路如图4(b)所示,其特点是适合于斩波电路,但在使用大容量IGBT时,必须使缓冲电阻值增大,否则,开通时集电极电流过大,使 IGBT功能受到一定限制。
(3)RCD缓冲电路如图4(c)所示,与RC缓冲电路相比其特点是,增加了缓冲二极管从而使缓冲电阻增大,避开了开通时IGBT功能受阻的问题。该缓冲 电路中缓冲电阻产生的损耗为: , 式中:L为主电路中的分布电感;I为IGBT关断时的集电极电流;f为IGBT的开关频率;C为缓冲电容;Ud为直流电压值。
(4)放电阻止型缓冲电路如图4(d)所示,与RCD缓冲电路相比其特点是,产生的损耗小,适合于高频开关。在该缓冲电路中缓冲电阻上产生的损耗为:
根据实际情况选取适当的缓冲保护电路,抑制关断浪涌电压。在进行装配时,要尽量降低主电路和缓冲电路的分布电感,接线越短越粗越好。
2.3 集电极电流过流保护
对IGBT的过流保护,主要有3种方法。
图5 集电极过流保护电路
2.3.1 用电阻或电流互感器检测过流进行保护
如图5(a)及图5(b)所示,可以用电阻或电流互感器与IGBT串联,检测流过IGBT集电极的电流。当有过流情况发生时,控制执行机构断开IGBT的 输入,达到保护IGBT的目的。
2.3.2 由IGBT的VCE(sat)检测过流进行保护
如图5(c)所示,因VCE(sat)=IcRCE(sat),当Ic增大时,VCE(sat)也随之增大,若栅极电压为高电平,而VCE为高,则 此时就有过流情况发生,此时与门输出高电平,将过流信号输出,控制执行机构断开IGBT的输入,保护IGBT。
2.3.3 检测负载电流进行保护
此方法与图5(a)中的检测方法基本相同,但图5(a)属直接法,此属间接法,如图5(d)所示。若负载短路或负载电流加大时,也可能使前级的IGBT的 集电极电流增大,导致IGBT损坏。由负载处(或IGBT的后一级电路)检测到异常后,控制执行机构切断IGBT的输入,达到保护的目的。
2.4 过热保护
一般情况下流过IGBT的电流较大,开关频率较高,故而器件的损耗也比较大,如果热量不能及时散掉,使得器件的结温Tj超过Tjmax, 则IGBT可能损坏。
IGBT的功耗包括稳态功耗和动态动耗,其动态功耗又包括开通功耗和关断功耗。在进行热设计时,不仅要保证其在正常工作时能够充分散热,而且还要保证其在 发生短时过载时,IGBT的结温也不超过Tjmax
当然,受设备的体积和重量等的限制以及性价比的考虑,散热系统也不可能无限制地扩大。可在靠近IGBT处加装一温度继电器等,检测IGBT的工作温度。控 制执行机构在发生异常时切断IGBT的输入,保护其安全。 除此之外,将IGBT往散热器上安装固定时应注意以下事项:
(1)由于热阻随IGBT安装位置的不同而不同,因此,若在散热器上仅安装一个IGBT时,应将其安装在正中间,以便使得热阻最小;当要安装几个IGBT 时,应根据每个IGBT的发热情况留出相应的空间;
(2)使用带纹路的散热器时,应将IGBT较宽的方向顺着散热器的纹路,以减少散热器的变形;
(3)散热器的安装表面光洁度应≤10μm,如果散热器的表面不平,将大大增加散热器与器件的接触热阻,甚至在IGBT的管芯和管壳之间的衬底上产生很大 的张力,损坏IGBT的绝缘层
(4)为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。
3 结语
在应用IGBT时应根据实际情况,采取相应的保护措施。只要在过压、过流、过热等几个方面都采取有效的保护措施后,在实际应用中均能够取得良好的效果,保 证IGBT安全可靠地工作。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。