发布时间:2011-10-14 阅读量:1827 来源: 我爱方案网 作者:
图1 IGBT的等效电路
由此可知,IGBT的安全可靠与否主要由以下因素决定:
(1)IGBT栅极与发射极之间的电压;
(2)IGBT集电极与发射极之间的电压;
(3)流过IGBT集电极-发射极的电流;
(4)IGBT的结温
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同 样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电 流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。
2 保护措施
在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。
2.1 IGBT栅极的保护
IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的 驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极 和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果 设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上电压,则IGBT就可能会损坏。为防止此类情况发生,应在IGBT的栅极与发射 极间并接一只几十kΩ的电阻,此电阻应尽量靠近栅极与发射极。如图2所示。
图2 栅极保护电路
由于IGBT是功率MOSFET和PNP双极晶体管的复合体,特别是其栅极为MOS结构,因此除了上述应有的保护之外,就像其他MOS结构器件一 样,IGBT对于静电压也是十分敏感的,故而对IGBT进行装配焊接作业时也必须注意以下事项:
(1)在需要用手接触IGBT前,应先将人体上的静电放电后再进行操作,并尽量不要接触模块的驱动端子部分,必须接触时要保证此时人体上所带的静电已全部 放掉;
(2)在焊接作业时,为了防止静电可能损坏IGBT,焊机一定要可靠地接地。
2.2 集电极与发射极间的过压保护
过电压的产生主要有两种情况,一种是施加到IGBT集电极-发射极间的直流电压过高,另一种为集电极-发射极上的浪涌电压过高。
2.2.1 直流过电压
直流过压产生的原因是由于输入交流电源或IGBT的前一级输入发生异常所致。解决的办法是在选取IGBT时,进行降额设计;另外,可在检测出这一过压时分 断IGBT的输入,保证IGBT的安全。
2.2.2 浪涌电压的保护
因为电路中分布电感的存在,加之IGBT的开关速度较高,当IGBT关断时及与之并接的反向恢复二极管逆向恢复时,就会产生很大的浪涌 电压Ldi/dt,威胁IGBT的安全。
通常IGBT的浪涌电压波形如图3所示。
图中:VCE为IGBT集电极-发射极间的电压波形;ic为IGBT的集电极电流;Ud为 输入IGBT的直流电压;VCESP=Ud+Ldic/dt,为浪涌电压峰值。
如果VCESP超出IGBT的集电极-发射极间耐压值VCES,就可能损坏IGBT。解决的办法主要有:
(1)在选取IGBT时考虑设计裕量;
(2)在电路设计时调整IGBT驱动电路的Rg,使di/dt尽可能小;
(3)尽量将电解电容靠近IGBT安装,以减小分布电感;
(4)根据情况加装缓冲保护电路,旁路高频浪涌电压
由于缓冲保护电路对IGBT的安全工作起着很重要的作用,在此将缓冲保护电路的类型和特点作一介绍。
图4 缓冲保护电路
(1)C缓冲电路如图4(a)所示,采用薄膜电容,靠近IGBT安装,其特点是电路简单,其 缺点是由分布电感及缓冲电容构成LC谐振电路,易产生电压振荡,而且IGBT开通时集电极电流较大。
(2)RC缓冲电路如图4(b)所示,其特点是适合于斩波电路,但在使用大容量IGBT时,必须使缓冲电阻值增大,否则,开通时集电极电流过大,使 IGBT功能受到一定限制。
(3)RCD缓冲电路如图4(c)所示,与RC缓冲电路相比其特点是,增加了缓冲二极管从而使缓冲电阻增大,避开了开通时IGBT功能受阻的问题。该缓冲 电路中缓冲电阻产生的损耗为: , 式中:L为主电路中的分布电感;I为IGBT关断时的集电极电流;f为IGBT的开关频率;C为缓冲电容;Ud为直流电压值。
(4)放电阻止型缓冲电路如图4(d)所示,与RCD缓冲电路相比其特点是,产生的损耗小,适合于高频开关。在该缓冲电路中缓冲电阻上产生的损耗为:
根据实际情况选取适当的缓冲保护电路,抑制关断浪涌电压。在进行装配时,要尽量降低主电路和缓冲电路的分布电感,接线越短越粗越好。
2.3 集电极电流过流保护
对IGBT的过流保护,主要有3种方法。
图5 集电极过流保护电路
2.3.1 用电阻或电流互感器检测过流进行保护
如图5(a)及图5(b)所示,可以用电阻或电流互感器与IGBT串联,检测流过IGBT集电极的电流。当有过流情况发生时,控制执行机构断开IGBT的 输入,达到保护IGBT的目的。
2.3.2 由IGBT的VCE(sat)检测过流进行保护
如图5(c)所示,因VCE(sat)=IcRCE(sat),当Ic增大时,VCE(sat)也随之增大,若栅极电压为高电平,而VCE为高,则 此时就有过流情况发生,此时与门输出高电平,将过流信号输出,控制执行机构断开IGBT的输入,保护IGBT。
2.3.3 检测负载电流进行保护
此方法与图5(a)中的检测方法基本相同,但图5(a)属直接法,此属间接法,如图5(d)所示。若负载短路或负载电流加大时,也可能使前级的IGBT的 集电极电流增大,导致IGBT损坏。由负载处(或IGBT的后一级电路)检测到异常后,控制执行机构切断IGBT的输入,达到保护的目的。
2.4 过热保护
一般情况下流过IGBT的电流较大,开关频率较高,故而器件的损耗也比较大,如果热量不能及时散掉,使得器件的结温Tj超过Tjmax, 则IGBT可能损坏。
IGBT的功耗包括稳态功耗和动态动耗,其动态功耗又包括开通功耗和关断功耗。在进行热设计时,不仅要保证其在正常工作时能够充分散热,而且还要保证其在 发生短时过载时,IGBT的结温也不超过Tjmax
当然,受设备的体积和重量等的限制以及性价比的考虑,散热系统也不可能无限制地扩大。可在靠近IGBT处加装一温度继电器等,检测IGBT的工作温度。控 制执行机构在发生异常时切断IGBT的输入,保护其安全。 除此之外,将IGBT往散热器上安装固定时应注意以下事项:
(1)由于热阻随IGBT安装位置的不同而不同,因此,若在散热器上仅安装一个IGBT时,应将其安装在正中间,以便使得热阻最小;当要安装几个IGBT 时,应根据每个IGBT的发热情况留出相应的空间;
(2)使用带纹路的散热器时,应将IGBT较宽的方向顺着散热器的纹路,以减少散热器的变形;
(3)散热器的安装表面光洁度应≤10μm,如果散热器的表面不平,将大大增加散热器与器件的接触热阻,甚至在IGBT的管芯和管壳之间的衬底上产生很大 的张力,损坏IGBT的绝缘层
(4)为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。
3 结语
在应用IGBT时应根据实际情况,采取相应的保护措施。只要在过压、过流、过热等几个方面都采取有效的保护措施后,在实际应用中均能够取得良好的效果,保 证IGBT安全可靠地工作。
英特尔公司新一轮全球裁员行动正式启动。根据内部信息,其核心制造部门——英特尔代工厂(Intel Foundry)的“初步”裁员已于7月中旬展开,预计在本月底完成首阶段人员调整。公司高层在致工厂员工的备忘录中强调,该决策旨在“打造一个更精简、更敏捷、以工程及技术能力驱动的制造体系”,此举对于“赢得客户信任”及提升市场竞争力至关重要。
全球三大DRAM巨头——三星电子、SK海力士和美光科技——已正式拉开DDR4内存大规模停产的序幕,标志着主流内存技术加速进入更新换代期。继三星率先宣布其DDR4产品线将在2025年底结束生命周期后,美光也正式向核心客户发出通知,确认其DDR4/LPDDR4产品在未来2-3个季度内将逐步停止出货。
据行业消息,三星电子近期在其越南工厂启动115英寸RGB MicroLED电视的试生产。电视业务负责人Yong Seok-woo亲赴产线视察流程,标志着该技术正式进入量产准备阶段。尽管产品命名包含"MicroLED",但技术本质为采用RGB三色MiniLED背光的液晶电视(LCD),通过创新背光方案实现画质跃升。
AMD在AI Advancing 2025大会上正式宣布,其新一代MI350系列AI加速器将搭载三星电子与美光的12层堆叠HBM3E高带宽内存芯片。这是AMD首次公开确认三星的HBM3E供货身份,标志着双方战略合作进入新阶段。MI350X与MI355X两款芯片采用相同架构设计,仅在散热方案上存在差异,均配备288GB HBM3E内存,较上一代MI300X的192GB提升50%,比MI325X提升12.5%。
全球光学龙头舜宇光学科技(02382.HK)近期披露2025年5月出货量数据,呈现“车载领跑、手机承压、新兴品类崛起”的鲜明态势。在汽车智能化浪潮与消费电子结构性升级的双重驱动下,公司业务版图正经历深度调整。