移动终端天线的设计技巧【经验之谈】

发布时间:2011-10-12 阅读量:1305 来源: 我爱方案网 作者:

中心议题:
    * 移动终端天线的特征
    * Diversity天线的设计
解决方案:
    * 将移动终端机壳的改成抽取或是折叠设计
    * 系统折叠机壳上增设阻抗 (Impedance)Z

包含移动终端在内的天线性能与外形大小有密切关系。论及天线时通常会使用以物理长度的频率波长制定的规格化电气性长度,一般是将电气性长度为低于1/2π 以下的天线定义为小型天线(以下简称为小型天线)。

移动终端几乎都是使用小型天线,它的缺点是低效率、窄频宽,为了确保天线的性能,因此天线小型化有一定的极限,然而如此一来却违背移动终端小型化的时代趋 势。所幸的是天线使用的元件大多是可以创造空间的导体,若与波长比较的话,只要导体具备一定大小,基本上就可以当作高天线使用,例如类似移动终端外壳等结 构就符合以上条件(图1)。

目前移动终端使用频率大多介于800mMHz~2GHz之间,波长相当于150~350nm左右,因此100~200mm的终端尺寸对小型天线非常有利, 也就是说只要巧妙应用移动终端的机壳,就可以获得小型、高性能的天线功能,有鉴于此本文以移动终端的机壳当作天线使用为例,依序介绍地表数位播放用天线与 PDC(PersonalDigitalCellular)用Diversity天线的设计技巧。


图1各种天线的特征


移动终端天线的特征

如上所述低效率、窄频宽是一般小型天线的主要缺点。天线的比频宽(以中心频率制定的频率范围)与天线大小有密切关系,小型天线的频宽则与天线的体积呈比例 关系。天线的效率可以用下式表示:

η=Pr/(Pr+Pd)
η:天线的效率。
Pr:放射功率。
Pd:损失功率。

由上式可知如果缩任意小天线大小的话,Pr会比Pd小导致放射效率大幅降低,这种现象尤其是天线附近的电磁界更加明显。图2是提供相同电力给两种天线时, 天线附近的实际电界分布状态,图中的单极(Monopole)天线高度为λ/4(此处λ表示天线频率的对应波长)属于中等大小天线,此时单极天线最大强度 大约是-20dB。

相较之下逆F天线的高度为λ/10属於小型天线,此时F天线最大强度则只有0dB,由此可知即使相同电力随着天线大小的差异,天线附近的电界(电压)分布 状态则截然不同,同样的磁界亦即电流强度也不相同。对小型天线而言构成天线的导体与天线周围的空间,若是属于有耗损性的媒体时,会就导致极大的电力(功 率)损失,相对的效率也会急遽劣化。


图2天线附近的实际电界分布状态


 


天线的等化G与物理长度L可以用下式表示:G=8log(2L/λ)(dBd)(dBd)为接收电波时的强度(与半波长Dipole比较)指标。此处若将 频率为/20nm移动终端的天线等化代入上式,可以求得-7.7dB左右的(理论)效率,然而实际上移动终端的效率大约只有-1dB。

图3是移动终端周围的电界分布状态,由图可知若对天线施加脉冲电界,天线周围的电界会随时间改变,例如右图的电界强度除了天线之外,机壳本体的电界强度也 会随时间改变增大,换句话说只要巧妙应用移动终端机壳的电波放射特性,即使小型天线也可以获得预期的效果。 


图3移动终端周围的电界分布

一般数位地表波播送使用波长为400~600nmUHF(UltraHighFrequency)的频宽,然而实际上物理特性上限制,使得一般传统移动终 端得天线不容易小型化,因此将移动终端机壳的改成抽取或是折叠设计,形成如图4右侧直接激振天线。


图4地表数位信号接收用天线


接着在波暗室内实际测试上述两种天线的水平面内放射pattern,必需注意的是天线的特性极易受到包含人体在内使用环境的影响,因此测试时被测天线必需 远离人体,此外电波几乎是从水平方向入射,所以本测试是以水平面内的放射pattern作为讨论对象
图5是各天线在波暗室内测试获得的结果;表1以Dipole天线作比较基准时的等化平均值,由表1的计算结果可知传统Monopole天线与Dipole 天线具备-2.5~2.8dB相同程度的平均等化值。 


图5两种天线的放射pattern


根据上述测试结果进行屋外测试,测试时在两处际野外(Field)作收、送讯试验。波暗室内测试时被测天线远离人体旋转一圈,依此计算天线的平均收讯功 率;相较之下屋外测试时则携带被测天线步行约十分钟左右回旋路程,接着再以Dipole天线作比较基准,计算天线的平均收讯功率。根据表1的计算结果显 示,两种天线在四个场地的平均收讯功率几乎完全相同,它与上述波暗室内测试结果一致,依此证明只要巧妙应用移动终端机壳的电波放射特性,即使小型天线也可 以获得预期的效果。 

暗室内等化(dB)
Field的等化(dB)
屋內1
屋內2
屋內3
屋內4
平均值
天线A
-2.5
-2.6
-1.1
-1.1
0.8
-1.0
天线B
-2.8
-0.5
-0.9
-1.8
-0.5
-0.9
表1各天线的等化特性


图6Diversity天线的构造

 

 

Diversity天线的设计


移动通讯系统为了抑制衰减(Fading)造成通讯品质恶化,因此通常都采用Diversity天线。上节介绍的两种Diversity天线,主要设计诉 求是收讯用途,所以涉及天线的设置场所与天线构造。

此处采取在连接移动通讯系统折叠机壳上增设阻抗(Impedance)Z,如此就能够利用一种天线获得多样的放射pattern,这种设计最大优点是可以 大幅缩小天线的设置场所与天线结构物的尺寸。

图 6是Diversity天线的构造,如图所示它是将天线设置在折叠机壳两接地(Ground)中央,两接地之间再铺设信号线与并排连接的阻抗,接着改变阻 抗观察放射pattern。根据图7的测试结果显示,Z=Z0(开放)与Z=Z1(容量性)时,放射pattern发生明显改变,Z=Z0时放射 pattern呈侧向8字形,Z=Z1时放射pattern与Z=Z0截然不同,换句话说即使相同天线,随着Z的变化会出现不同的放射现象。 


图7对各Z的放射pattern


为了探讨放射pattern的变化原理,因此对机壳施加电流藉此观察电流分布特性,根据图8的测试结果显示,Z=Z0时上下机壳都有同相电流流动,而且与 图7的放射pattern一样都是呈侧向8字形,由于Z=Z0时为同相电流,因此电界是以侧向加算;相对的Z=Z1则变成逆相电流,因此电界横向相互抵 销,放射pattern整体呈蝶翼状。由此可知只要改变抗Z就能够控制机壳上的电流,并使电流产生的放射pattern发生变化。 


图8Diversity天线的动作原理


以上介绍利用移动终端的机壳当作导体,设计小型高性能天线的技巧,同时探讨地表数位播放用天线与 PDC(PersonalDigitalCellular)用Diversity天线的设计技巧。


相关资讯
全球组织瘦身:英特尔启动新一轮裁员应对业绩挑战与战略转型

英特尔公司新一轮全球裁员行动正式启动。根据内部信息,其核心制造部门——英特尔代工厂(Intel Foundry)的“初步”裁员已于7月中旬展开,预计在本月底完成首阶段人员调整。公司高层在致工厂员工的备忘录中强调,该决策旨在“打造一个更精简、更敏捷、以工程及技术能力驱动的制造体系”,此举对于“赢得客户信任”及提升市场竞争力至关重要。

全球DRAM产业加速转向DDR5,美光正式启动DDR4停产计划

全球三大DRAM巨头——三星电子、SK海力士和美光科技——已正式拉开DDR4内存大规模停产的序幕,标志着主流内存技术加速进入更新换代期。继三星率先宣布其DDR4产品线将在2025年底结束生命周期后,美光也正式向核心客户发出通知,确认其DDR4/LPDDR4产品在未来2-3个季度内将逐步停止出货。

三星试产115英寸RGB MicroLED电视,高端显示技术再升级

据行业消息,三星电子近期在其越南工厂启动115英寸RGB MicroLED电视的试生产。电视业务负责人Yong Seok-woo亲赴产线视察流程,标志着该技术正式进入量产准备阶段。尽管产品命名包含"MicroLED",但技术本质为采用RGB三色MiniLED背光的液晶电视(LCD),通过创新背光方案实现画质跃升。

AMD与三星深化AI芯片合作,HBM3E加速量产推动AI服务器升级

AMD在AI Advancing 2025大会上正式宣布,其新一代MI350系列AI加速器将搭载三星电子与美光的12层堆叠HBM3E高带宽内存芯片。这是AMD首次公开确认三星的HBM3E供货身份,标志着双方战略合作进入新阶段。MI350X与MI355X两款芯片采用相同架构设计,仅在散热方案上存在差异,均配备288GB HBM3E内存,较上一代MI300X的192GB提升50%,比MI325X提升12.5%。

舜宇光学5月出货数据解析:车载业务强势增长,高端化战略重塑手机业务格局

全球光学龙头舜宇光学科技(02382.HK)近期披露2025年5月出货量数据,呈现“车载领跑、手机承压、新兴品类崛起”的鲜明态势。在汽车智能化浪潮与消费电子结构性升级的双重驱动下,公司业务版图正经历深度调整。