开关电源简化设计法则

发布时间:2011-10-11 阅读量:956 来源: 我爱方案网 作者:

中心议题:
    * 如何简化开关电源设计
解决方案:
    * 性能评估
    * 电气仿真与热仿真
    * 测试原型电源设计的思路

过去15年来,开关电源的设计逐渐成为主流。现在,开关电源的设计已不再是专家的任务,任何参与系统设计的人员都能够最终设计出自己的 开关电源。

幸运的是,各种专业水平的人都可以利用美国国家半导体的WEBENCH®在线工具来设计开关稳压器。由于专业人员通常希望针对某些专用元件或目标性能来修 改自己的设计,这些工具还允许进行定制设计。这意味着可能会把一个原来工作完美的设计“优化”至不稳定的状态。在线工具可以用来发现并纠正问题,完美地配 合工程师思路的发展。

迈出第一步

在线电源设计的第一步是定义电源需求,包括电压范围、输出电压和负载电流。可能的解决方案会得到自动评估,并将一、两个推荐方案呈现给用户。这也是设计者 可能遇到麻烦的第一个地方:如果需求的表达不正确(例如,如果实际的输入电压范围高于或低于输入值),则不适合的解决方案也会显示。用户可以尝试多组需 求,但必须对系统需求有清晰的概念。

当选定了稳压器解决方案后,就可以确定该电路的元器件。该工具会会显示元器件的号码。用户可以更改为一个预设的替代品,或输入一个定制元件。对于元器件值 和所有关键的寄生参数值都有指导。如果采用了与推荐值差异较大的定制元件,恐怕性能就会下降不少。

性能评估

一旦选定了电路元器件,就到了评估性能的时候了。一般来说,性能评估要看频率响应值(交叉频率和相位裕度)、峰值电流和电压,以及热性能值(效率、结温和 元件温度)。尽管这些计算建基于模型,仿真结果与工作台数据还是匹配得很好的。

电气仿真与热仿真

电气仿真支持某些解决方案。这些仿真器会显示出逻辑图,用户可以进一步更改元器件,并在稳压电路上运行测试。现有的测试包括波德图、稳态、线路瞬态、负载 瞬态和起动。(注意,波德图只能用于那些采用固定频率稳压器IC的电路。)为使在线测试更有用,用户应仔细检查所有测试条件。输入电压和负载电流对每次测 试都可能会变化,而默认值可能与用户的系统不相匹配。用户必须先估计出应得的结果,如果仿真结果与之不同,去找出原因。

热仿真可以用于许多方案。在线工具会用一个参考设计布局,评估在PCB板上实现的稳压电路。元器件和电路板温度的结果以全彩图象及表格显示。由于热仿真运 行得较快(几分钟内就可以给出结果),精度自然比不上一个耗费数小时的详尽CFD(计算流体动力)仿真结果。但是,温度估计一般在实际值的20°C内。这 对于确定电路板或元器件的热点,防止出现过热情况已经足够使用了。

测试原型

开关稳压器设计投产前的最后步骤是建立一个原型,用于工作台的测试。某些解决方案含有客户化设计的支持,其它方案则有参考设计板。在线工具有强大功能,或 许你会由此产生跳过此步骤的想法–千万不要这样!大多数设计的运行良好,但有些则需要精心布局才能得到最佳性能。实际的元器件可能并不精确匹配仿真结果, 特别是考虑它们的寄生效应后,实际性能(包括电路板布局效果)会与仿真结果略有差别。我们重申,关键是要确定期望值,并分析所有不同之处。设计者应使用各 种实验室工具,包括高速示波器、DVM、电流表,再加上自己的思考,就能得到最佳的成功机会
相关资讯
苹果2027年推出虚拟伴侣机器人:科技与情感的完美融合

​据最新消息,苹果公司计划于2027年推出其首款机器人产品,这款代号为"Eve"的虚拟伴侣机器人,将结合苹果在硬件设计、人工智能和用户体验方面的优势,开创消费级机器人新品类。不同于传统功能性机器人,苹果的这款产品更注重情感连接和个性化陪伴,有望重新定义人机交互的未来。

技术赋能 生态共赢——电子制造装备智能化建设的创新路径

在当前全球电子制造业向智能化、绿色化加速转型的背景下,产业链协同创新已成为突破技术壁垒的关键路径。本次走访聚焦微焦点X-RAY检测、自动化测试烧录一体化、半导体封装工艺等核心技术领域,通过构建"技术攻关-场景验证-生态协同"的三维合作模型,旨在打通从实验创新到规模化应用的最后一公里。

美国被曝秘密植入追踪器监控高端AI芯片流向 严防技术流入中国

美国为防止高端人工智能(AI)芯片通过第三方渠道流入中国,已秘密要求芯片制造商英伟达(NVIDIA)、超威半导体(AMD)等企业在出口至部分国家的AI芯片中植入追踪程序,以便实时监控芯片流向

晶振行业必备术语手册:工程师必收藏(下)

在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。

晶振行业必备术语手册:工程师必收藏(上)

在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。