发布时间:2011-09-22 阅读量:1130 来源: 我爱方案网 作者:
将闪光灯 LED 与一个电流检测电阻串联,然后通过一个升压转换器来驱动,这是一种简单的方法。图 1 描述了这种方法。
对升压调节器的输出电压进行控制,以匹配通过外部电阻检测的设定 LED 电流。不幸的是,这样做会让设计人员背离要从电池提供的有限电能中挤压出最高光通量的目标。外部电流检测电阻带有高功耗,其大小受到控制,目的是在低电流 状态下也可以提供可用的裕量电压,从而为持续的电影照明提供驱动。另一方面,如果电流增加,则电流检测电阻的压降升高,带来大量的功耗。另外,具有理想功 耗额定值的高精度电阻较昂贵,且会增加解决方案的体积,从而每条 LED 通道都要求一个电阻。
因此,更好的解决方案是一个集成在 LED 驱动器中的有源电流阱或者电流源,如图 3 所示。我们可使用一种压降和由此产生的功耗都得到降低的方法对内部电流检测电阻进行调节,具体调节情况取决于 LED 电流的大小。如果为低 LED 电流,则压降可以维持足够的高以获得精确的检测信号。
电流阱不仅仅检测 LED 电流,通过动态调节电阻,其还可以对 LED 电流进行调节。所产生的电流阱压降作为动态调节升压转换器输出电压所需的信息,旨在任何电流电平下都能够将功耗控制在一个可接收的最低限度。
图 4 显示了使用一个 1Ω 电阻检测电流和使用一个调节至 400mv 压降的有源电流检测方法之间的比较情况。受益于低功耗,有源电流检测方法明显有助于更高的系统效率。
从电池挤压出光通量
过去,RF PA 从移动电话电池吸取最高的脉冲电流。随着过去 5 年间多功能手机的发展,处理器供电和本文重点介绍的闪光灯 LED 供电吸取了最高的电流。例如,如果要驱动 1.5A 的 LED 电流,从电池吸取的电流可高达 3A,这是因为升压转换器的电压比。如此高的电流会使电池电压急剧下降。欠压阈值检测机制会防止系统在这种情况下出现故障。在闪光灯开启时由于低电池电压 电话会彻底关机,这是一种非常糟糕的用户体验。常用的解决方案是在低电池电压状态时让相机软件关闭闪光灯,相比之下不使用闪光的用户体验还不至于太坏。 PMIC 提供的缓慢电池电压信息刷新率、电池温度和老化效应以及更严重的不准确性放宽了安全的界限。
如果闪光灯驱动器本身能够防止电池电压下降过多,那么就可以保持较小的安全界限。通过使用一个受控转换率升高 LED 电流,并在上升期间持续监控电池电压可以实现这一目标。
TI 拥有一种监控电池电压的闪光灯驱动器技术。要获得稳定的 LED 电流波形并且避免过多的电池压降,闪光灯驱动器要主动控制 LED 电流上升/下降顺序。在上升阶段(上升斜率为 25mA/12µs),要对输入电压进行监控。如果输入电压降至某个设定阈值以下,则器件即刻停止让 LED 电流进一步上升至该设定阈值,并将闪光灯电流保持在实际电平,参见图 5。
因此,可以保证安全界限非常小,并且手机不会关机。电池周期中的不可逆电池压降得到避免,并且增加了电池总体工作时间。
安全系统集成
驱动高脉冲电流时,聚光灯为安全无故障运行。移动电话厂商迫切要求一种无缝系统集成解决方案。因此这就要求一种特性集,而不仅仅是标准安全运行特性,例 如:电感电流限制、欠压保护等。TPS61310 闪光灯 LED 驱动器拥有这种特性集,可以用于这种高要求的运行。
LED故障检测
不仅仅在生产过程中,在器件运行期间也必须检测到 LED 短路,以避免出现危险状态。检测这种状态的一种方法是强制几毫安的电流正向流动。这种电流可以在亚照明范围测试 LED,因此终端用户不会察觉到亮度。但是这种方法有一些缺点:LED 厂商通常不会测试亚照明范围。由于生产的工艺差异,不仅在 LED 类型之间即使在单个 LED 类型中都存在巨大的不准确性差异。这可能会带来漏检测某个短路 LED,或者伪错误检测。TPS61310 则不一样。如果一个或者多个 LED 工作时出现短路状态,低侧电流阱 LED1、LED2、LED3 便按照视频照明模式或者闪光灯模式各自的设定,限制最大输出电流,增加其输入电阻来防止吸取电流过多。另外,这一过程受到监控,并且通过 I2C 接口将短路 LED 状态反映给生产期间的测试设备,或者反映给工作中的相机引擎。利用类似方法,也可以对开路状态进行检测。
全球领先的传感器与功率IC解决方案供应商Allegro MicroSystems(纳斯达克:ALGM)于7月31日披露截至2025年6月27日的2025财年第一季度财务报告。数据显示,公司当季实现营业收入2.03亿美元,较去年同期大幅提升22%,创下历史同期新高。业绩增长主要源于电动汽车和工业两大核心板块的强劲需求,其中电动汽车相关产品销售额同比增长31%,工业及其他领域增速高达50%。
受强劲的人工智能(AI)需求驱动,全球存储芯片市场格局在2025年第二季度迎来历史性转折。韩国SK海力士凭借在高带宽存储器(HBM)领域的领先优势,首次超越三星电子,以21.8万亿韩元的存储业务营收问鼎全球最大存储器制造商。三星同期存储业务营收为21.2万亿韩元,同比下滑3%,退居次席。
8月1日,英伟达官网更新其800V高压直流(HVDC)电源架构关键合作伙伴名录,中国氮化镓(GaN)技术领军企业英诺赛科(Innoscience)赫然在列。英诺赛科将为英伟达革命性的Kyber机架系统提供全链路氮化镓电源解决方案,成为该名单中唯一入选的中国本土供应商。此重大突破性合作直接推动英诺赛科港股股价在消息公布当日一度飙升近64%,市场反响热烈。
全球领先的功率半导体解决方案供应商MPS(Monolithic Power Systems)于7月31日正式公布截至2025年6月30日的第二季度财务报告。数据显示,公司本季度业绩表现亮眼,多项核心指标实现显著增长,并释放出持续向好的发展信号。
贸泽电子(Mouser Electronics)于2025年8月正式推出工业自动化资源中心,为工程技术人员提供前沿技术洞察与解决方案库。该平台整合了控制系统、机器人技术及自动化软件的最新进展,旨在推动制造业向智能化、可持续化方向转型。