使用加速度计的低功率模式和自动唤醒/休眠模式

发布时间:2011-09-14 阅读量:1045 来源: 我爱方案网 作者:


中心议题:
         ×加速度计的产品设计

加速度计是常用于手持电子和/或电池供电的电子器件。整个系统的耗电量是产品设计的重要特性。用户希望不必不断地为电池充电或放电。设计加速度计时,电池用电量通常是许多客户用户关心的重要特性。因此,传感器以及整个系统的耗电量应该是最重要的设计考虑事项。

如果系统处理器通常只用于处理来自加速度计的数据,那么最好是将智能嵌入传感器,避免系统处理器连续运行而负载过重。飞思卡尔半导体推出最新动作传感技术——MMA8450Q加速度传感器,MMA8450Q中的智能特性包括:内置中断驱动的功能和数据速率的可选择性所带来的灵活性,以及分辨率、响应时间和电流之间的折衷平衡。

本文旨在阐释下列各项:

● 如果对低功耗的需求高于高分辨率, 则MMA8450Q能够降低所有ODR的部件的功耗,从而大幅节省整体系统耗电量。

● 提供各种情况下正常模式和省电模式的有效位数量以及耗电量。

● 内置功能允许系统MCU或处理器进入休眠模式,等待来自加速度计的中断。处理器不需要连续不断地接入和检测数据。这与连续轮询XYZ数据相比有很多优势,能够节省96%的总能耗,无线产品的电池能够持续更长的时间。

● 对于要求数据记录的应用,或等待一个事件,查看触发该事件的准确数据时,FIFO具有极大的节能潜力。处理器/MCU可以进入休眠模式,只有当FIFO数据满或发生中断时才唤醒并刷新数据,而不必每个采样时都接入数据。节电范围从78%到96%或更高,取决于所选MCU和ODR的情况。

● MMA8450Q可以用于在不同的ODR之间循环,降低设备的耗电量。可以利用5个可编程功能实现上述目标。

newmaker.com

省电模式与正常模式的对比

不同的可选输出数据速率下,耗电程度不一样。省电模式在Register 0×39系统控制寄存器2,位 0中设置。如果清除该位,设备则进入正常模式。如果设置了该位,则设备进入省电模式。注意在省电模式下,耗电量会降低,但是这种优势的代价是高噪声。省电模式下内部休眠时间更长、平均数据更少,因此降低了耗电量。位有效数量的变化大约是0.6至0.7位。对于需要高分辨率且耗电量最低的应用,需要进行折衷平衡。

表1、不同数据速率下使用FIFO节省的电能

newmaker.com

还要注意比较不同采样频率下的耗电量时,耗电量保持在1.56 Hz到50 Hz之间不变。这是耗电量和噪声之间的权衡。在低采样频率下,器件平均数据,改进噪声性能。在1.56 Hz频率下,器件比在50 Hz下多平均32个采样。在50 Hz的正常模式下,器件通常有7.8个有效(无噪声)位,而在1.56 Hz下,器件有10.2个有效(无噪声)位。
 

 

在终端系统应用中的节能功能

加速度计大多数情况下应用在使用电池供电的便携式器件中。电池寿命最重要,而降低能耗的能力取决于应用中需要执行的操作。在大多数场景中,应优先关闭一切,只有在需要时才尽可能快而高效地唤醒,执行需要的操作。这通常取决于用户显示器、显示器需要开启多久以及唤醒该单元的方式。

有时,如果处理器需要开启并不断运行,可以“变速”总线时钟速率来实现节能目的,也就是说,在快慢时钟模式间进行切换,而不是在运行和停止之间跳变。内置FIFO是经过验证的一个优势,因为它限制处理器需要读取数据的频率。FIFO在非电池供电的应用中也是一种优势,因为它能够再次提高计算吞吐量,不需要在每次进行新采样时都中断处理器。

大多数MCU/处理器都能够通过外部中断离开休眠状态,这正是为什么MMA8450Q能够用于“震动唤醒”或“倾斜唤醒”等。这也证明了MMA8450Q的先进功能的优势所在。多个MCU/处理器还可以通过内部中断唤醒,通常基于定时器间隔——也就是说,每100 ms唤醒一次等。这可以用来执行某些定期整理功能(如一天中定时进行),可以包括利用软件扫描加速度计和处理其数据。关掉MCU的电源与从休眠模式唤醒相比,几乎没有任何意义,因为唤醒总是比冷启动更快。唤醒时间差别会很大,取决于MCU或处理器。例如,某些飞思卡尔的8位MCU能够在6 μs内从休眠/停止模式唤醒,而其它处理器可能要用大约3 ms。MCU/处理器的快速唤醒时间能够高效地在休眠和唤醒状态之间进行切换。

MMA8450Q在器件中有许多内置功能,让主机处理器不必连续采样XYZ数据,并运行各种算法用于动作检测、方向检测、自由跌落或快速晃动。器件有识别这些内置事件的内部智能,一旦检测到事件便可以改变采样频率。例如,在远程控制器应用中,没人使用时,遥控器大部分时间都静止地放在桌上。MMA8450Q可以配置为在休眠模式下使用较低的采样频率(50 Hz),然后当用户拿起遥控,加速度计会切换到唤醒模式下的更快采样频率(400Hz),能够识别更快的移动动作姿势。必须启用和配置保持器件处于唤醒模式的内置模块。例如,方向检测能够配置为与动作检测一起唤醒器件。方向或动作的所有变化都会使器件处于较高的采样频率。器件停止移动时,会返回休眠状态,节省电能。

使用FIFO数据记录省电

FIFO有助于节省系统总能耗,将处理器放入休眠模式,直到需要处理来自加速度计的数据时才唤醒。思路是,配置MMA8450Q监控想要的中断,将处理器放入省电模式,直到需要响应加速度计时才唤醒。这样最大程度地增加了处理器的休眠或省电模式下的时间,最终会实现系统总能耗的最小化,增加电池寿命。FIFO允许处理器在传感器内部收集采样时休眠更长时间。这还最大程度地减少了I2C总线上的流量。

应谨慎选择数据速率的定时和总线速率。例如,将加速度计进入省电模式,以50 Hz (20 ms) 进行采样,FIFO在数据满溢模式下运行,并启用FIFO中断。中断将用于触发处理器唤醒,进行中断,并刷新这32个采样。新数据在刷新过程中不能保存到FIFO里。因此处理器必须唤醒,进行中断,并在下一个采样前的20 ms内刷新数据。

使用FIFO一次抽出所有32个采样能够节省开销。这允许应用处理器能够进行其它操作或在省电模式下保持更长时间。在400 Hz下进行采样时,每2.5 ms就会有一个新采样,不允许在不丢失采样的情况下花费很多时间用于唤醒和刷新。在400 Hz下,配置FIFO避免丢失数据的最佳方式是设置30个采样的水印。这是触发中断处理器唤醒的条件。然后,当确认了溢出标记时,每16个采样(12位数据)刷新一次,这需要2.475ms。处理器会立即进入休眠模式,并继续通过该模式循环,在水印时唤醒,确认了溢出标记时刷新最后16个采样。刷新8位采样时,FIFO应有足够的时间来刷新整个缓存器。

根据表1,这些值可以与典型锂电池支持一部手机的时长相关。这表示与电池使用寿命相关的节能。节能比例仅适用于应用处理器。一块示例手机电池存储1200 mA小时。根据该信息进行的比较。这显示了与唤醒和休眠状态之间采用FIFO和循环方式相比,处理器连续轮询数据时所有采样频率的总耗电量(处理器+加速度计)。

当处理器连续运行时,加速度计的耗电量对电池使用寿命的影响很小,因为处理器耗电量大大多于加速度计,因此在大多数情况下,加速度计的电流几乎可以忽略。典型锂电池会持续大约4天,连续轮询数据。使用加速度计将处理器放在休眠模式下的功能,对电池使用寿命的影响很大。

正常模式下使用最高采样频率时,与在处理器连续运行的情况下轮询数据相比,电池的使用寿命增加了4.2倍。在省电模式下使用最低采样频率时,节省的电能可实现22.6倍更长的电池使用寿命。

FIFO的另一个用途是能够分析截止中断触发事件那一刻发生的数据。设置了事件的中断标记后,能够刷新FIFO(配置在循环模式下),提取事件之前的32个数据采样。如果希望中断后,FIFO将数据保存在FIFO里,那么只能在从唤醒切换到休眠模式时才能进行。否则,必须在事件后刷新FIFO,以便将数据保存在处理器,进行深入分析。配置Single Tap(单击),并为循环缓冲模式配置FIFO,以400 Hz的频率运行。设置了敲打中断标记时,在中断的15 ms内读取FIFO,收集敲打(Tap)的完整签名,分析事件之前的数据以及事件过程中的数据。在很长的时间内跟踪事件时,该技术特别重要。MCU或处理器能够保持休眠模式,直到触发事件,它能够大幅节省电能。

配置MMA8450Q进入自动唤醒/休眠模式

MMA8450Q能够配置为根据所选的不同事件,在不同的采样频率之间(不同的耗电量)进行切换。通过支持休眠模式并设置超时时间,可实现该功能。然后必须设置中断功能,将器件唤醒。使用自动唤醒/休眠功能的优势在于:系统能够根据需要自动切换到更高的采样频率(更大的耗电量),但是大部分时间都处于休眠模式(低能耗),在休眠模式下,器件不需要高采样频率。可以在所选的事件上全部触发。也可以与低功率模式位(Reg 0×39 位 0)配合使用该功能,最大程度地降低耗电量。必须启用所选的内置功能,如果要使用这些功能唤醒器件,那么同样的相应功能必须设为“Wake From Sleep”(从休眠模式唤醒)。所有已启用的功能在休眠ODR下在休眠模式都仍然能够工作。只有那些选择用于“WakeFrom Sleep”(从休眠模式唤醒)的功能才能唤醒器件。

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。