发布时间:2011-08-19 阅读量:1098 来源: 我爱方案网 作者:
中心议题:
*技术思维方法论的关键性概念——过渡过程
在企业里做技术工作,我们常遇到一种现象,在厂子里产品一点问题也不出现,到了用户现场,就频频遭遇故障。还有一种现象,在开关机时或电网波动的应用场合,设备的故障率偏高。作为一个常见现象,不知是否有过关于此的更深入思考。这里面涉及到了一个技术思维方法论的关键性概念——过渡过程。
任何事物都有稳态和动态两种情况,在事物从一个稳态跳变到另一个稳态的过程中,并不是一下子跳变完成的,如(图1),而是都要经历一个变化的过程,这个道理谁都理解,说时迟那时快的电光石火之间,那也是需要时间的。这个过程就是过渡过程,那么这个过渡过程的变化状态是什么样的呢?其过程波形如(图2)。
学过《自动控制原理》的读者会觉得这个波形有点面熟,对了,它就是二阶系统的阶跃响应曲线,在这条曲线里,上升时间tr和超调量δ是一对矛盾,tr越小,则δ越大,反之,tr越大,则δ越小。
对电子产品,在上电的时候,相当于在电路系统的电源端加入了一个阶跃输入,在近似的二阶系统中,阶跃输入的响应曲线就如图2,电源回路中会有一个浪涌电流和超调电压,那么在元器件的选型和电路的安全性设计上,器件参数的指标就不能以稳态参数的指标来进行选取,比如电源输入端退耦电容的耐压值,假设电源为12V,III级降额,电容直流耐压降额系数为0.75,电容耐压值选取12/0.75=16V,这个值其实是有问题的,因为超调电压的最大电压点不会是规规矩矩的12V,而是更高点的电压,高到多少取决于电路系统的阻尼,严重者此超调电压甚至会接近甚至超过16V,这时电容出现失效就是不可避免的了。即使不出现问题,此耐压值也因为预留余量不足,使得其在有外部干扰的时候容易被损坏。
此现象在电路系统的很多地方都存在,晶振的输出波形、步进电机的输出、力学传动皮带轮或齿轮,都有这条曲线作用的影子,唯一不同的仅仅是tr和δ的量值大小不同而已。
这条曲线除了在工程领域起作用之外,在社会生活领域,也同样作用显著。年轻工程师的离职高发期大都发生在参加工作后的第2-6年,刚参加工作时,新鲜劲没过,干劲十足野心勃勃,经过几年的gaochao之后,领导对你的好印象也会有个类似此曲线的波动期,个人情绪也会因为美感疲劳、未得到持续新鲜的激励,个人感觉会逐步下降,逐步变得失望、倦怠、不满,最后的结果就是离职,我给这个阶段起了个名字叫“职业青春期”,谁都会经历,只是早一点晚一点,有些人,慢热型的,tr的上升时间很长,但δ很小,反而不会遇到破坏性的个人状态,稳定的干下去,经过长期的资深积累,相对更容易做出成就。
对于加薪对员工的激励效果,也符合这条曲线的规律。
对于婆媳关系获男女朋友的相处,这条曲线的规律也有同样的作用。
那到底这条曲线对我们有哪些好的或坏的作用?是不是说这条曲线作为客观规律,就是绕不开的魔咒呢?答案是“no”。
这条曲线的客观规律不可避免,但我们可以通过各种组合的形式,将这条曲线妥善加以利用,化不利为有利。
这条曲线的破坏点主要是第一个波谷的位置,如果挺不过去,矛盾或后果就发生了。我们能做的就是在这个阶段到来之前,要清醒地意识到此条规律,如果能避免则尽量规避,实在规避不了,则卧薪尝胆韬光养晦,切不可在此时作出过激决绝的事情来。规避的办法是通过外加应力的方式,使波谷到来之前,制造一个新的阶跃响应曲线,比如在被提拔到一个新的职位上之后,经过了上升和波峰之后,在进入波谷之前,就人为的制造出一个新的变化,比如再次轮岗,比如扩充新的工作内容,比如提出新的目标,甚至比如改换下办公环境促进新鲜感,都是调节避免波谷的好方法。
在谈恋爱的时候,有句口诀“紧了崩,慢了松,不紧不慢才成功”,追得太紧了,tr太小,超调高,波谷自然也就低;追得太松了,tr太长,一个有激情手段的竞争者介入,直接就出局了,倒是没遇到波谷的问题,但波峰也未曾来过,女孩子也是不易接受的。
婆媳关系也是如此,婆婆来儿子家,没有一上来婆媳就开战的,总是处了一段之后发生的。跌到波谷后,经过一段时间,气消了,一般会缓慢恢复下,但遇到事情又会不断的反复这个过程,婆媳关系是一个绝对的欠阻尼系统,振荡来振荡去,多次的波峰波谷都是正常的。最好的办法是尽量不要住在一起,实在不得不同住的话,做儿子的最好清醒一点,发现波谷要来的时候,尽快制造气氛,让波峰一个接着一个,则和谐幸福生活指日可待。
华为任正非先生不愧为制造变化的高手,通过一个又一个的管理变革,使一群精英始终处于亢奋进取的状态,制造出了一群狼性的华为员工;搞电子的技术工程师和技术管理者,在设计上充分考虑过渡过程超调、波谷和振荡特性的影响,规避其中的风险,在生活中妥善利用和调节事物发展规律的过渡过程特性,和谐的社会、和谐的家庭、和谐的产品将不再是梦想。
全球领先的传感器与功率IC解决方案供应商Allegro MicroSystems(纳斯达克:ALGM)于7月31日披露截至2025年6月27日的2025财年第一季度财务报告。数据显示,公司当季实现营业收入2.03亿美元,较去年同期大幅提升22%,创下历史同期新高。业绩增长主要源于电动汽车和工业两大核心板块的强劲需求,其中电动汽车相关产品销售额同比增长31%,工业及其他领域增速高达50%。
受强劲的人工智能(AI)需求驱动,全球存储芯片市场格局在2025年第二季度迎来历史性转折。韩国SK海力士凭借在高带宽存储器(HBM)领域的领先优势,首次超越三星电子,以21.8万亿韩元的存储业务营收问鼎全球最大存储器制造商。三星同期存储业务营收为21.2万亿韩元,同比下滑3%,退居次席。
8月1日,英伟达官网更新其800V高压直流(HVDC)电源架构关键合作伙伴名录,中国氮化镓(GaN)技术领军企业英诺赛科(Innoscience)赫然在列。英诺赛科将为英伟达革命性的Kyber机架系统提供全链路氮化镓电源解决方案,成为该名单中唯一入选的中国本土供应商。此重大突破性合作直接推动英诺赛科港股股价在消息公布当日一度飙升近64%,市场反响热烈。
全球领先的功率半导体解决方案供应商MPS(Monolithic Power Systems)于7月31日正式公布截至2025年6月30日的第二季度财务报告。数据显示,公司本季度业绩表现亮眼,多项核心指标实现显著增长,并释放出持续向好的发展信号。
贸泽电子(Mouser Electronics)于2025年8月正式推出工业自动化资源中心,为工程技术人员提供前沿技术洞察与解决方案库。该平台整合了控制系统、机器人技术及自动化软件的最新进展,旨在推动制造业向智能化、可持续化方向转型。