发布时间:2011-07-14 阅读量:762 来源: 我爱方案网 作者:
中心议题:
* 电动汽车充电电池性能退化的原因及弥补方法
电池的性能退化一方面是使用和老化的自然结果,另一方面则由于缺乏维护、苛刻的使用环境以及不良的充电操作等等加速其劣化。下面将探讨充电电池各种难以克服的问题、其原因及弥补这些问题的方法。
高的自放电率
各种电池都存在自放电,但使用不当会促使这种状态的发展。自放电率呈渐近线规律,最高的放电率出现在刚充电之后,然后逐渐减小。
镍基电池表现出较高的自放电率。在正常环境温度下,新的镍镉电池充电后,在第一个24h期间其电高量约减少10%。此后,自放电率稳定至每个月约10%。通常温度较高,其放电率也增大。一般的准则是:温度每升高10℃自放电率增大1倍。镍金属氢化物电池的自放电率比镍镉电池约大30%。
镍基电池经过数百次循环后其自放电率也增大,电池的极板开始膨胀从而更紧密地挤压电极之间的隔膜,形成金属树枝状晶体,这是结晶体生长的结果(记忆效应),从而损坏了电池隔膜,增大了自放电率。如果镍基电池在24h的自放电达30%时,应予弃用。
镍离子电池在充电后的第一个24h的自放电率为5%。此后下降至每月1%-2%,电池的安全保护电路增加约3%。高的循环次数和老化对锂基电池的自放电率没有影响。铅酸电池的自放电率约每月5%或者每年50%,重复性的深度循环充放电则使自放电增大。
电池自放电的百分率可用电池分析仪加以测定,但此程序需要数小时。测得的电池内阻常可反映电池的内阻是否过高。此参数可用阻抗计测量或用电池分析仪的欧姆测试程序。
电池的匹配
即使采用了现代化的生产制造技术,电池的容量也不可能准确预测,尤其是对镍基电池。制造过程中,将每个电池以其容量的大小加以检测并分类。高容量“A”类电池通常以优质级价格按特殊用途电池出售;中等容量“B”类电池应用于工业和商业产品;低端“C”类电池则以廉价出售。通过循环充放电并不能改善低端类别电池的容量。购买低价的可充电电池所得的是低电池容量。
在以多个电池组成的电池组中,电池的匹配应控制在±2.5%以内。在组成电池个数多的电池组中,以及需输出大负载电流和在低温下工作的电池组,需要更严格的电池容差控制。在一个新的电池组中的各个电池如果稍有小的失配,在经过数次充电循环后,将能互相平衡自行适应。电池之间能否很好地平衡适应,关係到电池组是否具有较长的使用寿命。
为何电池的匹配如此重要?这是因为一个“弱”电池含有的容量较小,它比“强”电池更快地放充电。这种放电过程的不平衡导致“弱”电池在放电经过低电压时,电池极性会反转。在充电时“弱”电池在被充过程中首先进入发热过充状态,而此时较强的电池仍能正常地接受充电并不发热。在这两种情况下“弱”电池处于不利的状态,使它变得更“弱”而导致严重的失配。
优质电池比低质量电池的电容量更为一致也更为均衡。对高端大功率工具应选用高质量电池,因其在大负荷和极端的温度环境下可有高的耐久性。虽付出高成本,然而其回报是电池组有更长的寿命。
锂基电池从生产线上下来时其本质性能就匹配得很好。在电池组内部各单个电池需符合严格的容差是非常重要的。电池组所有的电池必须在统一的时间之内达到充电满量,而且在放电终结时达到同样的门限电压。电池组内置的保护电路应在电池出现不正常的工作状态时起到安全保护作用。
短路的电池
电池生产厂商常常无法解释当电池还处于较新的状态时,为何某些电池显示出高的漏电率或者出现电气短路。其可疑的原因是电池在制造过程中可能混入了外来颗粒杂质。另一种是电极上的粗糙点造成对隔膜的损伤。因此对电池应改善其制造过程,这可大大地减少电池的“早期失效率”(infant mortality)。
深度放电造成电池的极性反转也会导致电池短路。如果镍基电池在大电流放电至彻底放光时,这种状态也可能出现。高的反向电流可造成永久性的电短路。另一种原因是由不可控的晶状体的形成导致的隔膜损伤,这就是所谓的记忆效应。
采用瞬时大电流脉冲试图修復短路的电池,其成功率极为有限。这种短路可能暂时被蒸发,但是对隔膜材料的损伤依然存在。这种修復后的电池常表现有高的放电率并且短路还会再次出现。在一个已老化的电池组中更换某个短路电池并非可取。除非这个新电池在电池电压和容量上与电池组中的其它电池性能一样是匹配的。
电解液的损耗
电池虽然都是密封的,但在其使用寿命期间会损失一些电解液,特别是如果由于粗心不适当充电产生过大的气体压力以致出现气体排放。一旦出现气体排放,在镍基电池上的弹簧加压的排气密封垫可能难以完好地再封闭,从而造成密封垫周围淀积起白色粉末,电解液的损耗最终将降低电池容量。
渗透或是在气阀调节的铅酸电池(VRCA)中电解液的损耗是一个久已存在的问题。其原因是过充以及在高温下工作造成的。用加水补充电解液的损耗成效是有限的,虽然可以部分地恢覆电池容量,但电池的性能将不甚可靠。
如果正确地充电,锂离子电池应不产生气体以致出现排气的问题。但是锂离子电池在某些条件下也会产生内部压力。某些电池内部配置——电路开关,当电池压力达到某个临界值时,该开关可切断电流。另外有些电池则设计成一种可控的方式或打开安全隔膜以释放气体。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。