计算机电源“白金”化

发布时间:2011-07-3 阅读量:934 来源: 我爱方案网 作者:


中心议题:
       *计算机产业拯救气候行动计划
解决方案:
       *在 QA 和 QB 延迟期间 (t Delay ) 让这些同步整流器开启

80+ 和计算机产业拯救气候行动计划 (Climate Savers Computing) 给计算机电源设 立了一个强有力的效率标准。这些标准的“白金”级别规定计算机电源在 20% 额定负载状态下必须有 90% 的效率,50% 额定负载时效率必须达到94%,而在 100% 负载时效率必须达到 91%。为了满足这些标准,一些电源设计人员选择使用一个具有同步整流的相移、全桥接 DC/DC 转换器。这种拓扑结构是一种比较好的选择,因为它可以在主 FET 上实现零电压开关 (ZVS)。一种普遍使用的驱动同步整流器的方法是利用已经存在的信号驱动主 FET。这样做存在的唯一问题是要求主 FET 时滞,以实现零电压开关。这会导致两个同步整流器在快速续流期间同时关闭,从而允许过多的体二极管导电,最终降低系统效率。本文的目的是建议使用不同的时序,驱动这些同步整流器,从而减少体二极管导电并最终提高整体系统效率。

市场上有一些脉宽调制器 (PWM),其设计目标是用于控制相移、全桥接转换器,而非驱动同步整流器 (QE 和 QF)。工程师们发现他们可以通过 PWM 控制器的控制信号OUTA和OUTB来控制同步 FET,这样便可以在本应用中使用这些控制器。图 1 显示了其中一款转换器中的一个功能示意图。

图1:同步整流改进型相移、全桥接转换器。(电子系统设计)

图1:同步整流改进型相移、全桥接转换器。

问题

通 过延迟H桥接(QA、QB、QC、QD)的 FET 导通,PWM 控制器有助于在这些转换器中实现 ZVS。FET QA 和 QB 导通和断开转换过渡之间的延迟 (tDelay) 会使同步 FET QE 和 Q F同时断开,从而允许其主体二极管实施上述导电行为。下列方程式较好地估算了续流期间 QE 和 QF 的主体二极管传导损耗:

电子系统设计

其中 POUT为输出功率,VOUT为输出电压,VD为主体二极管的正向压降,而 f s 为电感开关频率。

QE 和 QF 的主体二极管传导损耗 (P Diode ) 过多会使设计达不到“白金”标准。更多详情,请参见图 1 和图 2。如图所示,OUTA 驱动 FET QA 和 QF,而 OUTB 驱动 FET QB 和 QE。V1 为 LOUT和 COUT滤波器网络输入的电压,而 V QEd 和 V QEd 为相应同步整流器 QE 和 QF 的电压。

图2:图1所示转换器的时序图。(电子系统设计)

图2:图1所示转换器的时序图。

 

解决方案

若想减少 QE 和 QF 主体二极管导电,最好是在 QA 和 QB 延迟期间 (t Delay ) 让这些同步整流器开启。要做到这一点,必须通过其自有输出来驱动 FET QE 和 QF,其中“导通”时间而非同步的“断开”时间会重叠。图 3 显示了具有 6 个单独驱动信号(OUTA 到 OUTF)的相移、全桥接转换器的功能示意图。通过根据 QA 到 QD 的边缘,导通和断开 OUTE 及 OUTF,可以产生 QE (OUTE) 和 QF (OUTF) 的信号。表 1 和图 4 显示了完成这项工作所需的时序。图 4 所示理论波形表明,这种技术去除了主体二极管导电,其会在t Delay 期间两个栅极驱动均为断开时,与图 2 所示栅极驱动信号一起出现。

表1:OUTE和OUTF导通/断开过渡转换。(电子系统设计)
表1:OUTE和OUTF导通/断开过渡转换。

图3:使用表1时序的相移、全桥接转换器。(电子系统设计)
图3:使用表1时序的相移、全桥接转换器。

图4:减少QE和QF体二极管导电的时序图。(电子系统设计)
图4:减少QE和QF体二极管导电的时序图。

试验结果

为了查看这种技术在减少主体二极管导电方面的效果如何,我们对一个 390-V 到 12-V 相移、全桥接转换器进行了改进,旨在通过图 2 和 4 所示信号驱动 FET。

图 5 显示了同步FET(QE 和 QF)栅极的波形图,它们通过 OUTA 和 OUTB PWM 输出驱动。图中,在 OUTA 和 OUTB 之间的延迟时间 (t Delay ) 期间可以观测到主体二极管导电。

图5:QE和QF主体二极管导电波形图。(电子系统设计)
图5:QE和QF主体二极管导电波形图。

 

图 6 显示了同步FET(QE 和 QF)栅极的波形图,它们通过图 3 所示 OUTE 和 OUTF 信号驱动。这些信号都产生自 TI 新的 UCC28950 相移、全桥接控制器。图 6 表明 FET QE 和 QF 导通的同时主体二极管没有导电。尽管仍然可以看到一些主体二极管导电,但没有图 5 那么多。

图6:显示了QE和QF低主体二极管导电的波形图。(电子系统设计)

图6:显示了QE和QF低主体二极管导电的波形图。

我 们对两种驱动方案(OUTA 和 OUTB 与 OUTE 和 OUTF)从 20% 到满负载条件下 600-W DC/DC 转换器的效率进行了测量。在下一页的图 7 中,显示了这两种驱动方案的转换器效率数据。我们可以看到,相比使用 OUTA 和 OUTB,在 50% 到 100% 负载时使用 OUTE 和 OUTF 的效率高出约 0.4%。0.4% 效率增加看起来似乎并不多,但在设计人员努力想要达到“白金”标准时效果就不一样了。

图7:不同QE和QF驱动方案下600-W DC/DC转换器的效率。(电子系统设计)
图7:不同QE和QF驱动方案下600-W DC/DC转换器的效率。

结论

即使我们可以通过一个并非为同步整流(OUTA 和 OUTB 驱动方案)而设计的相移、全桥接控制器来对一个具有同步整流器的相移、全桥接转换器进行控制,实现 ZVS 所要求的 OUTA 和 OUTB 之间接通延迟也会使两个同步 FET 在同一时间 (t Delay ) 关闭。这种延迟会导致在 FET 快速续流期间出现过多的体二极管导电。本文表明更加有效的方法是:在快速续流期间叠加同步整流器的“接通”时间,以便让体二极管不导电。利用这种方法,虽 然体二极管导电并没有完全消失,但其被极大减少,从而提高了整体系统效率,让“白金”效率标准更容易达到。

 

 

相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。