触摸屏驱动实现

发布时间:2011-05-20 阅读量:659 来源: 发布人:

中心议题:
      *  WinCE触摸屏驱动的设计和实现

嵌入式设备触摸屏按其技术原理可分为五类:矢量压力传感式、电阻式、电容式、红外线式和表面声波式。其中电阻式触摸屏在嵌入式系统中用的较多,电阻式触摸屏可分为四线、五线、七线等几种。一般来说,WinCE触摸屏驱动的设计和实现有以下几个步骤:

(1)配置和初始化触摸屏

 触摸屏驱动在初始化过程会调用TouchPanelEnable函数,该函数调用的DDSI函数为DdsiTouchPanelEnable和 DdsiTouchPanelDisable。这两个DDSI接口函数是驱动实现的关键所在,分别用于打开和关闭触摸屏硬件。但是为了降低功耗,这两个函数其实可以不真正操作硬件,而只是实现软件上的控制。 同时,在初始化时还需要进行这几个配置和初始化:一是创建事件hTouchPanelEvent和 hCalibrationSampleAvailable,前者是在正常状态下当有触摸笔按下或者按下后需要定时采集数据时被触发;而后者是在校准状态下当有校准数据输入时被触发。二是检查初始化所需的中断gIntrTouch(触摸屏中断)和gIntrTouchChanged(定时器中断),并将这两个中断关联到事件hTouchPanelEvent。三是创建一个ISR线程TouchPanelpISR,用于等待和处理触摸屏事件 hTouchPanelEvent,它也是整个驱动程序中唯一的事件源。

(2)校准触摸屏基准参数

完成前面繁琐的工作后,驱动程序的各种功能就都已经准备就绪了,现在就可以实际操作触摸屏幕了。但一般来说,电阻式触摸屏需要校准,也就是说在驱动启动过程中MDD层要调用相应的DDSI函数来读取注册表中的校正数据校正触摸屏。理想情况下,校准程序只要在嵌入式设备初次加电测试过程中运行一次就可以了,参考值会被存储在非易失性存储器中,以免让用户在以后的加电启动期间再做校准。不过,高质量的触摸屏驱动程序是应该要向用户提供一种进入校准例程的途径,从而在由于温度漂移或其它因素造成校准不准确时进行重新校准。 在理想情况下,校正触摸屏基准只需两组原始数据,即在屏幕对角读取的最小和最大值。但在实际应用中,因为许多电阻式触摸屏存在明显的非线性,如果只在最小和最大值之间简单的插入位置数值会导致驱动程序非常的不精确。因此,在WinCE中需要获取多个校准点,常用的校准点数量为5个。

 方法是:①首先驱动程序在函数DdsiTouchPanelGetDeviceCaps 中设置校准点的个数;②是系统在 TouchDriverCalibrationPointGet中获取每个校准点的屏幕坐标;③是在屏幕界面的校准点坐标处显示一个位置符号,用户需要精确地在位置符号按下触摸屏;④驱动程序通过TouchPanelReadCalibrationPoint函数读取相应的触摸屏坐标值;⑤然后再开始下一个校准点,直到循环设定的次数后将采集到的触摸屏坐标值和校准点屏幕坐标送到TouchPanelSetCalibration函数中进行处理,该函数将产生校准基准参数。校准完成之后,触摸屏便可以开始正常的操作了。

 (3)判断屏幕是否被触摸

一旦完成了触摸屏硬件设置、初始化和基准参数校准后,接下来就需要用一种可靠的方法来判断屏幕是否被触摸了。WinCE提供了屏幕是否被触摸的检测机制,而且当触摸事件发生时还可选择是否中断主处理器。判断屏幕是否被触摸的驱动程序的函数名叫WaitForTouchState()。当屏幕被初次触摸时唤醒主机的中断,称为PEN_DOWN中断。这样做可以让驱动程序在屏幕没有被触摸时中断自己的执行,而不消耗任何CPU资源,而一旦用户触摸屏幕,驱动程序就被唤醒并进入转换模式。

 当被唤醒后就有一组模数数据等待转换并产生中断信号。中断是硬件与软件打交道的重要方法,所以大多数驱动程序都涉及到中断处理。就中断处理而言, WinCE采用了一种独特的方法。它将中断处理分为两步:中断服务例程(ISR)和中断服务线程(IST)。具体来讲就是把每个硬件的设备中断请求 (IRQ) 和一个ISR 联系起来,当一个中断发生并未被屏蔽时,内核调用该中断注册的ISR。因为ISR 运行于内核模式,所以应该被设计得尽可能的短,ISR 的基本职责是引导内核调度和启动合适的IST。IST 在设备驱动程序软件模块中编写,它从硬件获取或向硬件发送数据和控制代码,并进一步处理设备中断。

  WinCE触摸屏驱动程序是采用中断方式对触摸笔的按下状态进行检测,当检测到触摸笔按下时产生的中断,就会触发一个事件通知一个工作线程开始采集数据。同时,驱动将打开一个硬件定时器,只要检测到触摸笔仍然在按下状态,将定时触发同一个事件通知这个工作线程继续采集数据,直到触摸笔抬起后关闭该定时器。简单的说,就是驱动程序会同时采用触摸屏中断和定时器中断这两个中断源。目的在于不仅可以监控触摸笔按下和抬起状态,而且可以检测触摸笔按下时的拖动轨迹。触摸屏中断的两个逻辑中断分别是:SYSINTR_TOUCH是用于触摸笔点击触摸屏时产生相应的中断;SYSINTR_TOUCH_CHANGE 则用于触摸笔离开时产生相应的中断。

在理想情况下,校正触摸屏基准只需两组原始数据,即在屏幕对角读取的最小和最大值。但在实际应用中,因为许多电阻式触摸屏存在明显的非线性,如果只在最小和最大值之间简单的插入位置数值会导致驱动程序非常的不精确。因此,在WinCE中需要获取多个校准点,常用的校准点数量为5个。

方法是:①首先驱动程序在函数DdsiTouchPanelGetDeviceCaps 中设置校准点的个数;②是系统在 TouchDriverCalibrationPointGet中获取每个校准点的屏幕坐标;③是在屏幕界面的校准点坐标处显示一个位置符号,用户需要精确地在位置符号按下触摸屏;④驱动程序通过TouchPanelReadCalibrationPoint函数读取相应的触摸屏坐标值;⑤然后再开始下一个校准点,直到循环设定的次数后将采集到的触摸屏坐标值和校准点屏幕坐标送到TouchPanelSetCalibration函数中进行处理,该函数将产生校准基准参数。校准完成之后,触摸屏便可以开始正常的操作了。
 
相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。