变流器的核心器件MOSFET和IGBT

发布时间:2011-04-6 阅读量:1301 来源: 发布人:

中心议题:
    * 应用广泛的变流器MOSFET和IGBT
高端视点:
    *
MOSFET的性能特点
    * IGBT的性能特点
    *
功率器件的并联使用

MOSFET和IGBT是当前变流器中应用最广泛,最重要的两类核心器件。MOSFET主要应用在低压和中压(中小功率),IGBT主要应用在高压和中压(大功率)领域。

  关于MOSFET已经有很充分的精辟的论述,在此不再重复,只对个别问题作一点补充。IGBT的讨论还较少,因此,是本文的主要讨论对象。

  首先来说MOSFET

  提一个基础性问题:驱动MOSFET导通的最佳栅电压是多少伏?

  绝大多数人的回答是:15V。这个答案不能说错,但是,这活干得太粗。

  MOSFET的导通电阻是随栅电压的提高而下降,当栅电压达到一定值时,导通电阻就基本不会再降了,暂且称之为“充分导通”,一般认为这个电压是低于15V的。

  实际上,不同耐压的MOSFET达到充分导通的栅电压是不同的。基本规律是:耐压越高的MOSFET,达到充分导通的栅电压越低;耐压越低的MOSFET,达到充分导通的栅电压越高。我查阅了各种耐压MOSFET的VGS-RDS曲线,得到的结论是:耐压200V的MOSFET达到充分导通的栅电压>16V;耐压500V的MOSFET达到充分导通的栅电压>12V;耐压1000V的MOSFET达到充分导通的栅电压>8V。因此,建议:耐压200V及以下的MOSFET栅驱动电压=17-18V;耐压500V的MOSFET栅驱动电压=15V;耐压1000V的MOSFET栅驱动电压=12V。

  说了MOSFET的驱动电压,再来说说IGBT的驱动电压,IGBT的驱动电压为15±1.5V,与IGBT的耐压无关。驱动电压低于13.5V,IGBT的饱和压降会明显增高;高于16.5V,既没有必要,还可能带来不利的影响。

  再谈IGBT

  某些用IGBT作为主功率器件的变流器,IGBT的输出直接与外部负载连接,例如驱动电机调速的变频器,司服系统等等。一旦负载短路,就会造成IGBT极为严重的过流,此时IGBT会有多大的电流呢?大约是IGBT额定电流的几倍到十几倍,过流的严重程度与IGBT的栅驱动电压相关,即,当IGBT的驱动电压在14V以下时,其短路电流就较小,约是其额定电流的几倍;当IGBT的驱动电压在16V以上时,其短路电流就很大,约是其额定电流的十几倍,显然,这么大的短路电流,对IGBT极具破坏性。虽然,IGBT号称有10微秒的抗短路能力,十几倍的额定电流也是难于承受的,我的经验是,最多只能承受一次,第二次就玩完。因此,建议,如果有条件严格控制IGBT的驱动电压的话,此类变流器IGBT的栅电压为14.5-15.5V为宜。

  IGBT的主要技术参数之最大额定电流的定义:在一定的壳温条件下,可以连续通过集电极的最大电流(直流)。

  我们必须关注的是:最大额定电流指的是直流,也就是说,不能有开关动作,而且,栅电压为15V,即IGBT在良好导通的情况下。此时结温不高于规格书中的最高值。

  而实际应用时总是有开关动作的,开关时的瞬时功耗远远大于导通时的瞬时功耗,一般正常工作时,导通时的峰值电流应小于其最大额定电流,应该小多少为合理呢?这个问题不能一概而论。这与所选的IGBT的品牌,开关速度,工作频率,母线电压,外壳温度等等多种因素有关。最好向原生产商的技术支持咨询。

  我曾经向三菱作过咨询,采用三菱的IGBT模块,设计AC380V的通用变频器,工作频率6-7KHZ,选择相应适用的系列型号。变频器输出额定电流的峰值应该设计为IGBT最大额定电流的1/2,通用变频器一般允许最大150%过载,此时IGBT的峰值电流为IGBT最大额定电流的3/4。

  IGBT模块的寿命

  1: 功率循环寿命: 外壳温度变化很小但结温变化频繁时的工作模式下的寿命

  2: 热循环寿命:系统从启动到停止期间温度相对缓慢变化的工作模式下的寿命

  下图是功率模块的典型结构
IGBT功率模块的典型结构
当功率模块结温变化时, 由于膨胀系数的不同,在铝线和硅片间、硅片和绝缘基片间将产生应力应变,如果应力一直重复,结合部的热疲劳将导致产品失效。如下图
IGBT功率模块结温变化导致产品失效.jpg
在功率模块壳温变化相对缓慢而变化幅度大的工作模式下,由于绝缘基板和铜底板的膨胀系数不同,绝缘基板和铜底板之间的焊锡层将产生应力应变。

  如果应力一直重复, 焊锡层将产生裂纹。如果裂纹扩大到硅片的下方,热阻增大将导致热失控;或者热阻增加引起DTj 增加导致功率循环寿命下降,并最终导致引线剥离失效 。如下图
IGBT功率模块焊锡层产生裂纹.jpg
三菱IGBT功率模块热疲劳寿命(三菱提供)
IGBT功率模块热疲劳寿命.jpg
 

 


功率器件的并联使用

  要实现功率器件的并联使用,应满足两个条件:

  1、并联使用功率器件的一致性好(要选用同一批次的)

  2、其导通电阻或饱和压降为正温度系数

  MOSFET的导通电阻都是正温度系数的,很容易实现并联使用

  IGBT则不然,有的IGBT饱和压降是负温度系数的,有的IGBT饱和压降是正温度系数的。

  负温度系数饱和压降的IGBT并联使用难于均流,所以,不宜并联使用。

  正温度系数饱和压降的IGBT是可以并联使用的,并且能够达到很好的均流效果。

  例如,INFINEON的FF450R17ME3,下图是其饱和压降的温度特性,当集电极电流大于100A时,饱和压降有良好的正温度系数。本人使用两个模块并联,输出总电流400A交流有效值,实测并联模块电流的不均匀度小于5%
INFINEON的FF450R17ME3饱和压降的温度特性.jpg
三菱的CM400DU-24NFH,该器件最大额定电流为400A,这是一个开关速度很快的IGBT,其饱和压降比较大,一般应用在工作频率较高的地方,所以,总损耗较大,因此一般峰值电流在200A左右。从下图可以清楚地看到,该IGBT集电极电流小于350A时,其饱和压降为负温度系数。
 三菱的CM400DU-24NFH的饱和压降.jpg

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。