在紫外线LED上加荧光粉制作白光LED

发布时间:2011-03-24 阅读量:1138 来源: 发布人:

中心议题:
    * 用不同数目及颜色LED加荧光粉制成的白光LED
    * 比较由不同荧光粉组成的白光LED的特性
    * 白光LED技术的优缺点比较
    * 商品化白光LED的发光效率
解决方案:
    * 用紫外光LED及荧光粉做成白光LED时,使用含TiO2 40%的硅阻挡层减少紫外光的漏出

到现在为止,在紫外线LED上加荧光粉制作白光LED的人还很少,图1(a)是T.Nishida等人在350nm UV LED加三色(TBC:Three Basal Color)荧光粉所得的光谱,图1(b)是白光在CIE色度图中的坐标位置,旁边是标准光源A的位置,Ra为86~89。

图1

J.K.Park等人在波长400nm紫色或称n UV LED加Sr2SiO4:Eu2+荧光粉做成白光LED。图2(a)是在410nm光激发时不同Eu含量Sr2SiO4在室温时的PL光谱,波峰在520~540nm之间,图2(b)是在20mA时在400nm波长LED加Sr2SiO4:Eu2+荧光粉以及在460nm LED加YAG:Ce荧光粉的光谱图,两者都产生白光,只是Sr2SiO4:Eu的激发所得波长为560nm,而YAG:Ce的激发所得波长则是550nm。如果增加Sr2SiO4中的SiO2含量,波峰会移动变为长波长。图3是不同Eu含量Sr2SiO4荧光粉加紫光LED所做成的白光在CIE中的坐标位置,由图可知是直线关系。

图2

图3

Y.Narukawa等人做成的400nm LED样品a 在不同电流时的光谱如图4(a)所示。他们另做成的蓝光LED样品b的光谱如图4(b)所示,又在400nm LED加蓝色荧光粉做成的蓝光LED样品c的光谱如图4(c)所示。比较图4(b)及(c)可见,用蓝色荧光粉加紫光做成的蓝光LED不受电流的影响比较稳定。图5是样品a、b及c的光输出功率与电流的关系,在20mA时样品a的400nm LED的光输出功率为12m W(3.2V),样品b的蓝光LED的光输出功率为8.5m W(3.4V),而用荧光粉将400nm变成458nm的蓝光LED(样品c)的光输出功率为7.2mW(3.2V),电光转换效率为69%。

图4

图5

图6 (a)是蓝光LED+YAG荧光粉做成的白光LED的光谱(样品d),而图6 (b)则是用400nm激发蓝光+**荧光粉在20mA时的光谱(样品e),样品d的CCT约为5900K,Ra约为84.9,Vf约为2.4V,ηL约为24.6 lm/W,而样品e的CCT约为5800K,Ra约为85.3,Vf约为3.2V,ηL约为26.1 lm/W,比样品d性能稍佳。图7(a)中比较了样品d及e的光强度、发光效率与电流的关系,样品e的发光效率在高电流时较高而且较稳定,而样品d的发光效率则随电流的增加而下降,图7(b)是样品d及e在色度图中x及y的位置,样品d的位置随电流的增加而改变,但样品e则几乎不变,可见用以400nm激发蓝色荧光粉所产生的蓝光LED加**荧光粉做成的LED比较稳定。

图6

图7


图7

下面是紫光LED加三色荧光粉所做成的白光LED的结果。

Y.Sato等人是最早约1996年宣布用380nm n-UV LED激发ZnCdS:Ag(红色)、ZnS:CuAl(绿色)以及ZnS:Ag(蓝色)荧光粉得到如图8(a)所示的光谱,其所制成白光在CIE色度图中的位置是图8(b)中的d点。

图8

图8

J.Wagner 等人用394nm LED激发红、蓝、绿三色荧光粉得到如图9所示的光谱,其白光在CIE色度图中的坐标是图10中空心方块之处。此LED在20mA 时输入功率为1.12m W,白光LED光输出功率为0.28m W,CCT约为4000~4300K 之间,Ra=78。

图9

图10

J.K.Sheu等人也用400nm LED激发蓝、绿、红三色荧光粉,其中蓝色是BaMgAl14O23:Ru荧光粉,绿色是SrGa2S4:Ru荧光粉,红色是Y2O3:Ru荧光粉,由Nantex公司供给。图11 (a)是400 LED激发在20mA时得到的光谱,波长是450nm、500nm及600nm,图11(b)则是所得白光LED在不同电流时的光谱,CCT约为5900K,Ra约为75,20mA时发光效率为10 lm/W。

图11

图11

GELcore的E.Radkov等人用405nm LED分别激发(SrEu)5(PO4)3、(Sr,Eu)4Al14O25及(Ca,Eu,Mn)5(PO4)3Cl分别得到蓝光、蓝绿光及橙黄光,其光谱如图12(a)所示,图12(b)是白光LED的光谱,Ra=75.3。RadKov又用3.5MgO·0.5MgF2·GeO2:Mn4+(MFG)作红色荧光粉,用Ga5(PO4)3Cl:Eu2+、Mn2+(HALD)作橙色荧光粉,用SrAl2O4:Eu2+作绿色荧光粉,用(Ca,Sr,Ba)5(PO4)3Cl:Eu2+(SECA)作蓝色荧光粉得到的白光LED的CCT约为3000K,Ra约为97,x=0.441,y=0.41,发光效率为23 lm/W。

图12

图12

N.Shibata等人用如图13(a)所示的紫光375nm LED加三色荧光粉做成白光LED,图13(b)是其LED的I-V曲线,图13(c)是紫光加蓝、绿、红三色荧光粉做成的白光的光谱。

图13

图13

Toyoda Gosei的T.Uemura等人用图14(a)面朝上及图14(b)面朝下的结构做成紫光LED,称之为TG(Toyoda Gosei)紫光LED,图14(c)是面朝下的LED的I-V及L-I特性曲线,用此紫光LED加表1中列举不同荧光粉可以得到不同的白光特性,表中并有蓝光LED加YAG的结果,可作比较。图15是高纯度白光的光谱,是紫光LED加蓝、绿、红及新的荧光粉而组成,Ra约为91。

图14

图15


表1
Y.Uchida等人改变O(橘**600nm)、Y(**570nm)、G(绿色540nm)及B(蓝色470nm)四种颜色荧光粉的成分得到不同含量的OYGB荧光粉,其光谱如图16(a)所示,图16(b)所示是用这些荧光粉做成的白光在CIE色度图中坐标的位置。Y.Uchida等人又用382nm n-UV LED在20mA时激发蓝、绿、红三色荧光粉得到如图17(a)所示的光谱,其中蓝色荧光粉(Sr,Ca,Ba,Mh)16Cl:Eu2+发出447nm蓝光,绿色荧光粉ZnS:Cu,Al发出528nm绿光,而红色荧光粉Y2O3S:Eu2+得到628nm红光,其所组成的白光的CCT=7644K,Ra=90。图17(b)是n-UV LED在20mA时激发OYGB荧光粉所得的光谱,波峰是450nm、520nm及580nm,所组成的白光的CCT=3700K,Ra=98,K=30 lm/W。图16是计算结果,而图17是实验结果。

图16

图17

T.Gessmann及Y.L.Li等人用不同数目及颜色LED加或不加荧光粉做成的白光LED如图18所示,其中除以上列举的方法之外,还有用多个多色LED加荧光粉的方法,包括①用蓝光及红光LED加绿色荧光粉;②用蓝光、浅蓝光及红光LED加绿色荧光粉;③用蓝光、红光及浅蓝光LED加绿色荧光粉等。这三种方法都利用绿色荧光粉。当然如果用多个多色LED,则还有其他的选择。

图18

用UV LED及荧光粉做成白光LED时,还要考虑UV光漏出的可能,B.Barune等人采取的方法是使用含TiO2 40%的硅阻挡层减少UV的漏出。图19中比较有无用此阻挡层的结果,由图可知,用了阻挡层,UV的光强度减少很多。

图19

以下是目前商品化白光LED的结果:

① GELcore公司由Gree公司获得由410nm LED做成的白光LED,其CCT约为2700K,Ra约为80,在350mA时光输出功率为32 lm,ηL约为32 lm/W。

② Lumileds公司的白光LED,其CCT约为3200K,Ra约为85+,光输出功率约为22 lm。

③ Toyoda Gosei 公司用蓝光LED加YAG得Ra约为82,光稳定程度为中等。又用374~401nm波长n-UV LED加红、蓝、绿及红色新荧光粉得到Ra约为91,K=240,光极为稳定(参见表1)。

④ Nichia 公司的白光LED的ηL约为50~60 lm/W。

⑤ Cree公司的白光LED 的发光效率K约为74 lm/W。

表2中比较用不同颜色及数目LED加荧光粉所做成的白光LED的优点及缺点,以供参考。

表2
相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。