基于嵌入式Linux的RFID安检系统的设计

发布时间:2011-03-21 阅读量:1034 来源: 发布人:

中心议题

 *RFID中引入Linux操作系统

解决方案

  *整个系统结构介绍
  *Linux下串口的开发
  *sqlite3数据库的应用开发

RFID(射频识别)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境下。RFID技术可识别高速运动物体并可同时识别多个标签, 操作快捷方便。非接触IC卡是目前RFID系统中最常用的一种电子标签,它诞生于20世纪90年代初,是世界上最近几年发展起来的一项新技术,它成功地将射频识技术和IC卡技术结合起来,解决了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。由于存在着磁卡和接触式IC卡不可比拟的优点,使之一经问世,便立即引起广泛的关注,并以惊人的速度得到推广应用,如我国的第二代公民身份证、公交卡、ETC免停车付费卡等。可以说RFID技术越来越多地应用到我国身份安检、质量安检、车辆安检、执法安检等诸多安检系统中。
    本文就是针对安检系统这种工程背景下RFID通信的应用开发。现在一般的RFID通信都基于串口,串口因其通用性、方面性和优良性能得到了广泛的应用。由于安检系统中往往涉及大量重要数据的读取、通信以及实时更新,因此数据库技术的引入必不可少。同时本文选择了Linux操作系统,众所周知Linux同Windows相比性能更安全、更可靠,而且Linux还是一款免费的代码开源的操作系统,裁减内核更方便、快捷,与其他操作系统相比有着许多独特的优势,更加适合用作嵌入式操作系统。
1 系统结构介绍

    RFID安检系统主要包括RFID前段读写器、嵌入式Linux终端两大部分,其结构如图1所示。
图1系统结构图
 其中嵌入式终端的CPU采用ARM9内核,内核执行速率达几百兆赫兹,可以很好地满足RFID数据的读取和存储。由于嵌入式系统一般是一个经过裁剪、资源极其有限的系统,因此对于安检系统中涉及到的大量数据只能存取到外围存储设备中,本方案中的SD卡模块正是用来存储数据库的,当RFID读写器读取到指定数据,便在SD卡中的相关数据库文件中查询,并根据查询结果做出相关反应并及时更新本地数据库。

2 Linux下串口的开发
    在Linux下对串口进行配置、打开、读写等一系列的操作其使用方式与文件操作一样,区别在于串口是一个终端设备[1]。Linux中的串口设备文件存放于/dev目录下,其中串口1、串口2一般对应设备名依次为“/dev/ttyS0”、“/dev/ttyS1”。在使用串口之前必须设置相关配置,包括波特率、数据位、校验位、停止位等[2]。
    串口开发的流程和串口开发过程中串口配置的流程分别如图2(a)、图2(b)所示。
图2 串口开发与配置流程
串口设置由下面结构体实现:
    Struct termios {
    tcflag_t  c_iflag;        /* input flags */
    tcflag_t  c_oflag;        /* output flags*/
    tcflag_t  c_cflag;        /*control flags */
    tcflag_t  c_lflag;        /* local  flags */
    tcflag_t  c_cc[NCSS];    /* control characters */
    }
    按照串口配置流程,对termios结构体设置相关参数,当串口按自己的设置要求配置成功后,即可将串口当做普通I/O文件,使用read和write函数对串口进行读取。

3 sqlite3数据库的应用开发
    sqlite3数据库是一种嵌入式数据库,其目标是尽量简单,因此抛弃了传统企业级数据库的种种复杂特性,只实现对于数据库而言必备的功能。尽管简单性是sqlite3追求的首要目标,但是其功能和性能都非常出色,具有支持SQL92标准、所有数据存放到单独的文件中支持的最大文件可达2 TB、数据库可以在不同字节的机器之间共享、体积小、系统开销小、检索效率高、支持多种计算机语言、源码开放,并且可以用于任何合法用途等特性。
3.1 sqlite3数据库的移植
    sqlite3数据库的移植过程如下所述:
    (1)首先从sqlite官网上下载最新的sqlite3源码包;
    (2)解压源码包,并进入解压目录:
    tar -zxvf sqlite-3.6.23.1.tar.gz
    cd sqlite-3.6.23.1
    (3)配置Configure脚本,使用相关选项生成编译文件Makefile文件:
    ./configure–-enable-share –-prefix=./sqlite-3.6.23.1/result –-host=arm-linux
    选项 -enable-share指定使用Linux的共享库
    选项 -prefix指定了安装目录为./sqlite-3.6.23.1/result
    选项 -host指定了编译环境为目标机为arm的交叉编译环境
    (4)交叉编译,生成嵌入式终端下数据库的管理程序和库文件, 最终在result目录下得到数据库管理程序sqlite3(相当于Windows下Access程序),提供编程所需的API的动态库libsqlite3.so.0.8.6,编程所需的头文件sqlite3ext.h sqlite3.h。交叉编译的命令如下:
    Make
    Make install
    (5)将数据库管理程序sqlite3、提供编程所需的API的动态库libsqlite3.so.0.8.6及其1个软链接拷贝到开发板根文件系统相应位置,分别在嵌入式终端的/usr/bin和/usr/lib这两个目录下,命令如下:
    Cp result/bin/sqlite3  /arm-linux/usr/bin
    Cp –l result/lib/libsqlite3.so*  /arm-linux/usr/lib
    (6)为了能在开发机上编译,调用了sqlite3数据库的API的应用程序,需要将动态库libsqlite3.so.0.8.6及其2个软链接、2个头文件拷贝到交叉编译工具链所在目录的适当位置,至此sqlite3数据库的移植和开发环境的配置已完成。只要输入SQL语言便可以进行相关操作。
3.2 Linux下sqlite3的C语言开发
    sqlite3里最常用到的是sqlite3 *类型。从数据库打开时开始,sqlite3就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。数据库打开时起,这个类型的变量就代表了所要操作的数据库。
    (1)打开数据库API接口函数
    int sqlite3_open(文件名, sqlite3 *);
    用这个函数开始数据库操作。需要传入两个参数,其中之一是数据库文件名,例如:/home/test.db文件名不需要一定存在,如果此文件不存在,sqlite3会自动建立;如果存在,就尝试把它当数据库文件打开。
    sqlite3 * 参数即前面提到的关键数据结构。函数返回值表示操作是否正确,如果是SQLITE_OK则表示操作正常。相关的返回值sqlite3定义了一些宏,具体这些宏的含义可以参考sqlite3.h文件。
    (2)关闭数据库API接口函数
    int sqlite3_close(sqlite3 *);
    如果前面用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。
    (3)执行SQL语句API接口
    由于嵌入式sqlite3数据库支持SQL语言,因而调用C中相关执行函数就如同在终端下操作数据库一样方面快捷,下面是具体的API函数:
    这就是执行一条sql语句的函数。
    Int sqlite3_exec(sqlite3 * db, const char *sql,sqlite3_callback,Void * ,char ** errmsg);
    参数1是调用打开数据库函数sqlite3_open()打开的数据库对象。
    参数2 是一条待执行的SQL语句,其语法格式同标准SQL语言规范一样,如创建 table时插入的记录如下:
    create table student(id varchar(10) primary key, age smallint);
    此语句创建了名为student的表,表中定义了id(学号)和年纪两个变量,其中id是主键。
    Insert into student values(12345678,21);
    此语句向student表中插入一组数据(12345678,21),其中学号为12345678,学生年龄为21。
    对于数据库的其他操作,如数据库更新、修改、查找等用法同上。
    参数3 sqlite3_callback是自定义的回调函数,对执行结果的每一行都执行一次这个函数。
    参数4 void *是调用者所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里,如果不需要传递指针给回调函数,可以填NULL。
    参数5 char ** errmsg是错误信息。sqlite3里面有很多固定的错误信息。执行sqlite3_exec之后,如果执行失败则可以查阅这个指针,即可知道执行过程中错误发生的位置。
3.3 串口同sqlite3通信测试与分析
    为了验证sqlite3数据库在嵌入式Linux[3-4]终端下的执行效率和稳定性,为此做了一个简单的测试实验:通过上位机程序向嵌入式Linux终端的串口定时发送字符串;嵌入式Linux终端接收到字符串便立即写入到下位机的数据库中。自后查看数据中的数据,看看有没有遗漏和误码。上位机的程序使用VC6.0开发,整个程序界面只设了一个按键,按下按键,上位机就向嵌入式Linux终端不停地发送字符串数据,按键响应程序设计如下:
void CSendDlg::OnButton_Click()
{
   state=1;
   while(1)
   {
    str.Format("第%3d条记录",state);//格式化字符串格式
    m_Port.WriteToPort(str,str.GetLength());//向串口发送字符串
        state++;
    Sleep(100);//延时100 ms
   }
    可见程序是个定时100 ms便发送一条字符串的循环,而且发送的每一条字符串事先通过str.Format格式化为固定长度,本例中是11 B。按下按键后发送的第一条字符串为:“第1条记录”,每发送一条字符串里面的数字加“1”,这样写到数据库中就可以很清楚地查看有没有遗漏和误码,而且可以通过修改Sleep函数的延时参数检测出嵌入式Linux终端下sqlite3数据库操作的速度。
    下位机嵌入式Linux终端的程序设计为:先创建一个数据库文件test.db,接着就是一个死循环,串口不停地查找有没有数据写入,当检测到数据时,便写入到test.db中,若写入有误,则立即跳出循环,终止程序。
char sql[100]="create table receive(name varchar(40))";
qlite3_open("/var/sd/test.db",&db);    //在SD卡中创建
test.db文件
sqlite3_exec(db,sql,0,0,&errmsg);    //在test.db文件中插入
表receiver
fd=open_port(fd,1)//打开串口1
set_opt(fd,9600,8,'N',1)//配置串口属性,开始通信
while(1)
{
        n=0;
        i=0;
        bzero(read_buf, sizeof(read_buf));
        if( (n=read(fd, read_buf, sizeof(read_buf))) <=0)
            Continue;//未读到数据则继续查找串口
    printf("recever %d wordsn",n);//输出读到的字符数
        sprintf(sql,"insert into receive values(%s)",read_buf);
    result =sqlite3_exec(db,sql,0,0,&errmsg);//插入数据
到数据库中
        if(result==SQLITE_OK)
      printf("第%3d条数据写入成功n",++i);
//若插入成功则提示
    else break;//若插入不成功,则跳出循环
}
    测试结果如图3所示。
图3 测试结果
整个测试根据上位机串口发送的频率不同做了多组实验,每组实验写入1 000个数据,最终结果分析如下:上位机在定时80 ms左右或大于80 ms的情况下发送数据时,数据库写入的误码率为零;当定时时间小于80 ms时,随着定时时间变小误码率会越来越高。通过数据分析可知原因有以下几点:一是数据库本身写入需用时几十毫秒,二是SD卡并非高速读写设备,当数据还未完全写入数据库时若有新数据发过来,则下次读写将会发生难以估计的错误。实验还得出了当把数据库文件写入到系统Flash上的总耗时约为50 ms,比写入SD卡中约少30 ms。不过就80 ms左右的一次读写速度而言,嵌入式数据库sqlite3执行效率和稳定性非常可观,现在一般的RFID读写器通过串口执行一条指令的时间也需几十毫秒的时间,因而使用sqlite3数据库在执行速率和稳定性上对于安检系统中RFID读写数据的处理可以很好地达到要求,而且sqlite3还支持数据加密,安全性同样非常出色。
    本文介绍了此RFID安检系统的硬件框架和软件设计,实现了RFID安检系统基于嵌入式Linux下的串口通信以及数据库的应用。最后通过实验证明并确定了其在速率、稳定性方面的可行性,对于当今大多数RFID安检系统的开发具有一定的参考价值。
参考文献
[1] WALL K,WASTON M.GUN/Linux 编程指南(第2版)[M]. WHITIS M,王勇,译.北京:清华大学出版社,2002.
[2] 华清远见嵌入式中心.嵌入式Linux C语言应用程序设计[M].北京:人民邮电出版社,2008.
[3] FELDHOFER M.A proposal for an authentication protocol in a security layer for RFID smart tags.IEEE Proceedings  of MELECON,2004.
[4] 华清远见嵌入式中心.嵌入式Linux系统开发标准教程[M].北京:人民邮电出版社,2009.
相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。