发布时间:2010-12-27 阅读量:1796 来源: 发布人:
【中心议题】
【解决方案】
1 微胶囊电泳型电子纸的基本结构
1.1 ITO导电玻璃
ITO(indium tin oxide,氧化铟锡)导电玻璃是一种既透明又导电的玻璃,它采用磁控溅射沉积成膜技术,以ITO材料作为溅射靶材,在玻璃基板上生成一层很薄的ITO膜。这层ITO膜同时具有良好的导电性和透光性,适于制作透明显示电极,是平板显示器生产的重要原材料之一。玻璃基板的厚度通常只有0.3~1.1mm,它具有重量轻、透明度高、平整度高、有一定的机械硬度、容易切割加工等特点,因此被广泛应用于平板显示器上。ITO导电玻璃随着20世纪70年代初LCD显示器的兴起至今已经历了30多年的历程,并从过去只能生产高电阻、小尺寸、普通表面、黑白显示的产品,发展到了现在能够生产低电阻、大尺寸、抛光表面、彩色显示的产品。
1.2微胶囊电泳显示器件构造
微胶囊电泳显示器是将电泳液封装在粒径50~150um的微胶囊内,在透明电极板上进行单层涂布制备的。图中微胶囊电泳显示器件示意图中的透明显示屏和透明电极可选用透明导电的ITO玻璃,如果想要制作柔性的显示器,就可以选取淀积了复合ITO膜的聚碳酸酯透明薄膜代替玻璃。中间的显示主体部分被称为电子墨水,它是将微胶囊化后的电泳液借助透明的胶粘剂涂覆到显示屏和驱动电路板之间的,每个近似球形的微胶囊之间都填充满了透明的粘性介质。电泳液中的材料选取有多种组合,微胶囊的合成方法也有多种,选用的黏性介质也可不同,显示主体的胶囊层也未必是单层结构,具体情况视制作出的微胶囊性质、涂覆工艺、显示器要求而定。最下层的驱动电路板可根据需要选取。
虽然随着近几年人们对微胶囊类电子纸的研究逐渐深入,但是制作出来的电子纸结构基本没有差别。都是把制作出的微胶囊分布在粘着剂中构成分散体系,涂布或者印刷在导电玻璃基板或柔性透明塑料电极上,根据电子墨水的成分特征设计驱动电路参数,在有源矩阵驱动下就可以进行性能良好的显示。
由此可见,除去目前驱动电路的制作水平对电子纸的显示性能有影响外,微胶囊类电子纸的显示性能主要是由微胶囊包覆的电泳液来决定。
2 微胶囊电泳显示原理
电子纸由数百万个微胶囊组成,每个微胶囊都有透明的外壳,胶囊内充满颜料溶液和悬浮于其中的大量的带电荷的颜料粒子。从其中包覆的颗粒种类来说明微胶囊电泳显示的原理。
2.1 单粒子微胶囊型电泳显示
1995年,Joseph Jacobson在斯坦福大学做物理学博士后时将一种白色带电微粒放在深蓝色溶剂中然后用微胶囊包覆制成。利用电泳技术,当施加一种电场时,使带正电的白色二氧化钛颗粒停留在微囊的可见一侧,形成一张白色的页面。而当施加反向电场时,就把这些白色粒子拉到另一侧,被深色溶剂所掩盖,对光的反射强度减弱。直到一个正电荷脉冲又把白色的颗粒送回原位。把上面这一过程倒过来,就可以在蓝色背景上产生白色的字母。利用不同方向和大小的电场处白色粒子对光的反射强度不同来进行图像显示。
2.2 双粒子微胶囊电泳显示
为了增强对比度,在胶囊内包裹两种电泳颗粒来实现“双粒子”显示。将黑白颜色的微粒装入微胶囊中,这两种颗粒带有相反的电荷,在没有电场的情况下,粒子在布朗运动下随机分布,此时呈现中间色,当上极板带负电荷时,微胶囊内的白色颗粒向上极板运动,黑色颗粒向下极板运动,使上极板呈现白色;施加反向电场时则相反,使上极板呈现黑色。当同一胶囊内粒子带有相反电荷时,粒子之间会互相吸引而产生团聚,难以实现重复稳态显示。故一般要求粒子尽可能带同种电荷,不同颜色的粒子具有不同的Zeta电位,以便在相同的电场作用下具有不同的电泳迁移率,这样就可以通过控制施加电场的方向和时间来控制所要显示的颜色。
2.3 包含两种以上颗粒的微胶囊电泳显示
有的胶囊里包含两种以上的颗粒,这里要求不同颜色的颗粒应该具有不同的电泳迁移率,即具有不同的zeta电位,这样就可以通过控制施加电场的方向和时间来控制所要显示的颜色。如Albert在其全彩色的电子墨水显示装置中使用了三种颜色的颗粒,其颜色分别是紫红色、绿色、黄色,使用的分散介质是卤代烃(四氯乙烯、聚三氟氯乙烯)。
在USB4®和Thunderbolt™接口传输速率突破10GHz的产业背景下,静电放电(ESD)和意外短路引发的系统失效已成为消费电子与通信设备的核心痛点。传统保护方案在射频性能与防护强度间的取舍矛盾,特别是不合规Type-C接口中Vbus与TX/RX短路风险,迫使行业寻求突破性解决方案。Nexperia最新推出的五款1V保护二极管,通过创新架构实现鱼与熊掌兼得的技术跨越。
2025年8月1日,璞璘科技自主研发的首台PL-SR系列喷墨步进式纳米压印设备正式通过验收并交付国内特色工艺客户。该设备攻克了步进硬板非真空贴合、喷胶与薄胶压印、压印胶残余层控制等关键技术,标志着我国在高端半导体装备领域取得实质性突破。
全球晶圆代工龙头企业台积电在推进2nm先进制程量产的关键阶段,于内部安全审查中发现异常活动。公司声明显示,其监控系统侦测到未经授权的技术信息访问行为,已对涉事人员解除雇佣关系,并启动法律程序追责。
在2025年8月4日,全球领先的半导体解决方案供应商Onsemi正式发布了其2025年第二季度财务报告。本季度,公司展现了稳健的经营表现,反映其在功率半导体领域的战略优势。随着汽车电子化和人工智能应用的加速渗透,Onsemi通过持续优化业务模式,在充满变化的市场环境中取得可喜进展。
据Counterpoint Research近期发布的报告,2025年第二季度,全球智能手机市场呈现显著收入增长,总收入达1000亿美元以上,同比提升10%。这一数据创下了自统计以来第二季度的收入新高峰。尽管出货量仅同比增长3%,不足总量的显著跃升,但市场动能源于平均售价(ASP)的大幅上涨。报告显示,本季度ASP同比增长7%,达到约350美元的历史高位,反映出消费者对高端设备的强劲需求推动了整体盈利能力提升。这种收入与出货量的差异化增长,突显了市场结构正加速向高端化转变。