实用的电流测量解决方案

发布时间:2010-12-6 阅读量:2220 来源: 发布人:

【中心议题】

  •        *指出了现代电子系统电流测量方法的问题
  •        *提出了现代电子系统

【解决方案】

  •        *利用电流监测器测量LED电流值
  •        *经放大后匹配参考电压

许多现代电子系统要求采用某种形式的电流测量方法来改善系统的功耗、效率和可靠性,这些系统包括了LED驱动、便携式设备和各种体积的供电电源等。

为了尽可能提高大功率LED的使用寿命,需要对LED电流进行精确调节。大多数调节器是采用参考电压为2.5V1.25V的电压调节器,这些调节器可以实现高性能调整,但遗憾的是,当可编程电压调节器用作电流调节器时,电流检测电阻上的压降会造成很大的功率损失,因为电阻上的压降与参考电压相等。

对于3WLED来说,不管采用线性调节器还是开关调节器,在电流检测电阻上都会消耗额外的2.5W功率,因此会造成很大程度的自体发热,即使最好情况下效率也只能达到50%,这对任何DC-DC转换器解决方案都会造成很大影响。

1给出了针对上述问题的简单高效的解决方案。利用电流监测器测量LED电流值,经放大后匹配参考电压,这样就可减少电流检测电阻上的压降(一般小于100mV),因此可以大幅节省功率。

当使用开关调节器时,在LED的高压侧使用电流监测器测量LED的电流,同样可以提高系统的整体性能。这种检测方法不再以地为参考,因而减少了对噪声的易感性。采用电流监测器的高压侧电流测量方法带来的另外一个好处是能用于降压(buck)、升压(boost)以及boost-buck配置中。

1LED电流调节器。

 

电源过流检测

为了提高可靠性,许多电源产品采用了某种形式的供电轨过流保护/检测电路。对单路输出而言,电流可以在地侧测量,但这样做存在干扰地平面的缺点。通过在电压轨(rail)上测量电流可以克服这个问题,而且能够测量多个轨。

2对传统配置和采用电流监测器的配置进行了比较。电流监测器专门用于测量以高压侧为参考的电流,可以从被监测的电压轨处获取偏置信号。这意味着它们不需要单独的电源管脚,并且只需要两个电阻,因而可以显著减少PCB面积和器件数量,而且能提供比通用运放更高的性能。

2:过流感应电路。

 

许多新型器件已经集成了参考源和比较器,可提供完整的过流保护解决方案。如图3所示的集成方案将放大器、参考源和晶体管整合在一个器件中,不仅节省了PCB面积,而且不会对地平面造成干扰。

3:过流保护电路。

 

便携式设备的电池电量估计

越来越多的便携式设备需要高效的电池电量估计方法,通过先进的系统电源管理延长使用时间。

传统的电池电量测量方法大多通过电池电压的测量提供简单的电量估计,因为电池电量的下降会导致电池电压的下降。然而这种方法在许多应用中被证明是不够理想的,因为电池单元的电压在单元放电期间会不断变化,并且高度依赖于单元温度、放电率以及单元充电时的温度。

只使用电池电压作为电池容量的测量依据会使事情变得更糟,因为当负载电流急剧增加时会导致电池有效内阻上产生额外的压降,从而导致错误的低压测量结果。例如,具有红外、蓝牙以及相机功能的手机在全部功能开启时会导致电池监测电路误给出低电量告警,并导致系统关闭部分电路以期延长电池使用时间。

在高放电率(600mAHr单元释放1200mA)情况下,电池电量会小于标称值的20%,但其放电曲线要比低放电率时更平滑。这种现象极大地限制了剩余电量测量精度,也即意味着使用相同电压对于低电池标志以及所有温度和放电率而言,会产生很大误差。

通过测量放电电流可以提高电池容量测量精度,从而使剩余电量的估计具有可计算性,可更准确地显示剩余电量,同时系统也能无差错的关闭未使用的部分电路以延长电池寿命。

测量放电电流的另外一个好处是可以保护电池免受过大放电电流的冲击,这种冲击会缩短电池寿命,甚至损坏电池。

笔记本电脑的电池通常使用专用的气体压力芯片来测试电池寿命,但在许多对成本敏感的小型设备中,这些芯片太过昂贵,而且功耗很大。用于手机等小型便携式设备,简单的解决方案是使用微功耗运放或电流监测器,并通过小的串联电阻测量放电电流。这些电路通常会和用于测量电池电压和温度的电源管理系统一起使用,因此无需额外昂贵的器件,也不会增加PCB面积。

微功耗电流监测器非常适于这些应用,因为它们能与一个或多个锂离子/聚合体单元协同工作,而不会干扰地线连接,并且可以从被监测的电压轨中获得电能。电流监测器需要使用一个额外的电阻来设置其增益,这样就为在多个系统中使用一个元件匹配所要求的动态范围提供了一个简单途径。图4中需要增加的器件是电流监测器、低阻值串联电流检测电阻和增益设置电阻。

4:具有成本效益的微功率电量监测电路。

综上所述,电流监测器为电流测量提供了一种简单高效的解决方案。通过增加一个串联小电阻就能实现电流测量,而且该电阻负载上的压降和功耗都非常小。在大多数应用中这种方案不仅可以提高系统性能,而且可以减小整体尺寸。

相关资讯
美光科技加速DDR4退场计划 资源转向高价值应用领域

全球领先的存储芯片制造商美光科技(Micron Technology)近期向其核心客户发布正式通告,宣布其主流产品DDR4 SDRAM(双倍数据速率第四代同步动态随机存取存储器)将按计划进入产品寿命终止(EOL)阶段。依据该计划,美光在未来两至三个季度内,将逐步停止针对个人电脑(PC)和数据中心关键应用领域的DDR4及LPDDR4(低功耗DDR4)产品的出货供应。这一行动标志着PC与服务器领域主导多年的DDR4内存技术时代已迎来最后的告别。

全球组织瘦身:英特尔启动新一轮裁员应对业绩挑战与战略转型

英特尔公司新一轮全球裁员行动正式启动。根据内部信息,其核心制造部门——英特尔代工厂(Intel Foundry)的“初步”裁员已于7月中旬展开,预计在本月底完成首阶段人员调整。公司高层在致工厂员工的备忘录中强调,该决策旨在“打造一个更精简、更敏捷、以工程及技术能力驱动的制造体系”,此举对于“赢得客户信任”及提升市场竞争力至关重要。

全球DRAM产业加速转向DDR5,美光正式启动DDR4停产计划

全球三大DRAM巨头——三星电子、SK海力士和美光科技——已正式拉开DDR4内存大规模停产的序幕,标志着主流内存技术加速进入更新换代期。继三星率先宣布其DDR4产品线将在2025年底结束生命周期后,美光也正式向核心客户发出通知,确认其DDR4/LPDDR4产品在未来2-3个季度内将逐步停止出货。

三星试产115英寸RGB MicroLED电视,高端显示技术再升级

据行业消息,三星电子近期在其越南工厂启动115英寸RGB MicroLED电视的试生产。电视业务负责人Yong Seok-woo亲赴产线视察流程,标志着该技术正式进入量产准备阶段。尽管产品命名包含"MicroLED",但技术本质为采用RGB三色MiniLED背光的液晶电视(LCD),通过创新背光方案实现画质跃升。

AMD与三星深化AI芯片合作,HBM3E加速量产推动AI服务器升级

AMD在AI Advancing 2025大会上正式宣布,其新一代MI350系列AI加速器将搭载三星电子与美光的12层堆叠HBM3E高带宽内存芯片。这是AMD首次公开确认三星的HBM3E供货身份,标志着双方战略合作进入新阶段。MI350X与MI355X两款芯片采用相同架构设计,仅在散热方案上存在差异,均配备288GB HBM3E内存,较上一代MI300X的192GB提升50%,比MI325X提升12.5%。