发布时间:2010-12-3 阅读量:1475 来源: 发布人:
混合动力汽车(HEV)或充电电动汽车(PEV)通常使用电机驱动功率模块,例如IGBT模块,这些模块会产生非常大的热量,通常大约为1,000W到 2,000W。冷却这些汽车电子功率模块的唯一有效方法是水冷,而不是风冷,因为水的热传导率是空气的20倍。水还具有很高的热量(吸收能量的能力),是空气的4倍。
在大多数的汽车应用中,功率模块都具有这样的热挑战。事实上,有专门的独立冷却循环来对其进行冷却。散热片用来将功率模块的热量传导到冷却液,成为冷却循环的重要部分。那么,如何选择最佳的液体冷却散热片呢?要做出这个选择需要在多种考虑因素之间进行权衡,例如热性能、重量、成本、可靠性和可制造性。让我们看看IGBT芯片产生的热量是如何通过冷却液传导。
改善导热性能
首先,热必须通过直接敷铜(DBC)底层转移出来,然后经过模块基板(base plate),再通过热油脂,再进入到栓接的散热片(见图1)。这部分的热量转移完全是通过热传导来实现的。
为改善传导热转移,你要么选择具有最高的导热系数(k)的材料,要么降低层厚度,或者减少热源与冷却液之间的层数。例如,氮化铝陶瓷(k=160W/mK) 用作DBC基底材料,相比于氧化铝来说(k = 25到 35 W/mK)是一种不错的选择。相对于铝(k = 220 W/mK)或者铝硅炭化物(AlSiC) (k = 170 - 180 W/mK)来说,铜(k = 390 W/mK)材料是用于模块基底更好的选择。简言之,如果不选择非常昂贵的材料,你所选则的材料的导热性能不会超过铜。
可以简化散热片材料的选择,实际上就是在铝、AlSiC和铜之间选择。铝很轻而且便宜,但是导热性能一般,而且很重要的是,没有合适的制造方法来获得高的表面积。铝铸模不能获得高的密度,而且容易产生孔隙,会导致冷却液的泄漏。铝还具有比较高的热膨涨系数(CTE ~ 23 ppm/C),因此不适合用作功率模块基板材料。
AlSiC很轻,但是很昂贵,被加工用来降低CTE以接近IC材料,通常做成9 - 12 ppm/C之间。而且,AlSiC的铸造工艺难以实现更大的冷却表面。而且铸模磨损很快,导致更换铸模的成本开销。最后,材料的导热率相对比较差,大约为 k=170w/mK。因为这些原因,AlSiC从来没有用作栓接冷却片材料,在实际中,只有在需要非常高的可靠性的时候,才选择AlSiC作为基板材料。
铜具有很高的导热率、可接受的成本,以及最重要的是,可以利用先进的成模技术形成带有非常密集针翅(pin fin)形状的散热片(例如Amulaire Nanopins)。铜铸模能达到的针翅密度可以实现超过铝或AlSiC散热片3倍到5倍的散热表面积。尽管铜的CTE比较高(17 ppm/C),但是仍然成功地应用在高可靠性汽车应用中,作为功率模块的基板/散热片,其制造工艺是基于铜基板设计的。
图1:冷却系统的组成示意图。
设计实践
优化功率模块冷却的一个选择是用散热片替代功率模块基板。这有效地去掉了组装中的两个层(原来的基板和导热油脂),大大地改善了从芯片到散热片墙的热传导。
一旦热量转移到散热片墙,冷却液对散热片的冷却就取决于对流热传导。基本的对流热传导等式为:
q = h A (Tw - Tf)
其中q为传导的热量,单位为瓦,h是对流热传导系数,A为散热片与冷却液接触的表面积,Tw是散热片墙的温度,Tf为流动液体的温度。
如前面所述,Tw的大小决定于从IGBT芯片经过功率模块器件传导到散热片墙的热量,Tf由冷却系统的其它参数决定。
更有效的导热路径可以获得更高的Tw,以及冷却液更佳的对流冷却。对于液体冷却来说,无论采用什么散热片,h值都将比较小。那么很明显,在任何指定的Tw下,表面积A将主要确定液体冷却散热片的效果。
本文小结
为了给HEV或PEV电机驱动功率模块提供最佳的冷却解决方案,首先需要确保模块结构以及材料、散热片墙具有最高的导热率。采用散热片作为功率模块基板的设计,其表现的性能将远远高于栓接的散热片。
其次,使散热片与冷却液的接触面积最大,同时让液体流的压力降低在一个合理的范围。因此,选择一个具有大表面积以及“平整”的散热片。粗糙的或有角的散热片会加大压力降,迫使采用高功率和高成本的泵。通常,最佳的结构是圆形或卵形针翅阵列。
HEV或PEV功率模块冷却的最佳选择是那些用铜制成的,具有大的表面积和压力降低小的散热片来替代模块的基板。这种结构可以实现性能、重量、尺寸、可靠性和成本的最佳结合。
在作比较时,记住要考虑散热片的所有参数。高性能铜散热片作为功率模块基板,由于其卓越的性能,大多数情况下可以直接包含在汽车引擎冷却环路中。对于发动机驱动电路来说,这种结构节省了专用冷却环路(泵、管道和水箱等)的成本,并减小了尺寸和重量。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。