发布时间:2010-11-10 阅读量:1435 来源: 我爱方案网 作者:
1引言
随着数字信号处理器(DSP)与可编程逻辑器件(CPLD)的发展与普及,电源的控制已经由模拟控制、A/D混合控制,进入到全数字控制阶段。传统的感应加热电源控制电路大多采取模拟控制的方式,因此难免存在触点多、焊点多、可靠性低的缺点,对一些元件的工艺性要求高,灵活性较差。数字系统在这些方面就显得很先进:首先是灵活,即修改参数很方便;其次是在保证程序可靠的前提下,运行比模拟系统可靠得多;最后,使用起来比较简洁、灵巧,无需太多的元器件。因此,采取集成度高、集成功能强大的数字控制器设计电源的控制系统,以适应不断提高的电源输出可编程控制,控制精度高等要求。
2主电路拓扑设计
在感应加热电源的应用中,淬火、焊管、焊接等工艺都要求高频率大功率的电源。功率MOSFET虽然可以实现高频工作,但其电压、电流容量等级低,大功率电源需采用串、并联技术,影响了电源运行的可靠性。绝缘栅双极晶体管(IGBT)比较容易实现电源大功率化,但在高频情况下,其开关损耗,尤其是IGBT关断时存在的尾部电流,会限制其工作频
率的进一步提高。
倍频式高频电源采用大功率自关断功率器件IGBT,通过在逆变桥的每个IGBT上分别再并联一个IGBT来实现,每组并联的IGBT轮流工作,使得负载频率为开关管工作频率的2倍,间接拓宽了IGBT的使用频率。开关管工作于零电流开关状态,消除了尾部电流引起的关断损耗,理论上可实现零开关损耗。基于以上原因,在此选用倍频方案设计电源,可以使电源的整体输出功率大幅提高。主电路拓扑如图1所示。
3控制系统设计
控制器采用的是TMS320LF2407A和MAXⅡ系列芯片EPM1270T144C5。图2示出基于DSP+CPLD的电源系统数字化控制框图。DSP中PID模块的输出作为PWM控制模块的输入信号,控制两相占空比可调的PWM信号的脉宽;CPLD的锁相环跟踪谐振频率,结合DSP输出的移相角度,在PWM模块生成PWM脉冲触发信号;最后经脉冲分配模块实现分时鄄移相控制策略。
3.1基于CPLD的软件设计
控制系统工作过程如下:由电流检测电路检测负载槽路电流,经整流滤波后波形变换成方波信号,由谐振判别环节判断是否处于谐振状态。若是,则启动数字锁相环(DPLL)。采用全新的控制与方案实现DPLL,即鉴相器采用双D触发器鉴相器,其输出值代表相位误差;环路滤波器采用数字比例积分的方法实现;用数字控制振荡器(DCO)代替压控振荡器。DPLL的输出信号跟踪负载谐振频率,在PWM控制模块直接生成两组互补的PWM脉冲信号,作为逆变桥后桥臂VTbx和VTdx(x=1,2)的基本触发脉冲。同时,为了防止同一个桥臂的上下管直通,避免电压短路损坏开关器件,通常采用在两个开关管间设置死区的方法来解决,即等一个桥臂的开关管关断后方可开通另一桥臂的开关管,遵循先关断后开通的原则。
图3a为同一桥臂上下功管带死区的驱动脉冲。p是锁相环锁相锁频的负载谐振电流信号,clk是25 MHz的晶振频率。图3b为VTax和VTdx这两组开关管的驱动脉冲。由图可知后桥臂的驱动信号PWMd完全跟踪负载电流方波脉冲的上升沿,这样就实现对系统频率的跟踪控制。采取时间分割控制的目的在于提高系统的工作频率,CPLD中的脉冲分配模块实现对驱动脉冲的分时功能,图3c为驱动脉冲PWMd的分时功能仿真波形。由图可知,每个IGBT上的驱动频率为系统频率的1/2,即可利用两个IGBT的分时轮流工作提高了系统的工作频率。
3.2基于DSP的软件设计
图4示出增量式PI算法程序流程图。
为了得到稳定的输出功率,必须时刻跟踪负载电信号的变化,通过采样负载电压电流信号控制驱动脉冲占空比,以达到功率调节的目的。功率控制程序通过将从A/D转换结果寄存器中所读取的功率设定量与检测到的反馈量相比较,其差值通过数字PI控制算法进行处理,从而得到需要调整的相位角度φ的值。PI调节结果经SPI口输入到CPLD的PWM控制模块。
4实验
4.1实验参数及器件选取
倍频感应加热电源主要设计参数:输入电源为380 V/50 Hz三相交流电源,额定输出功率100 kW,逆变工作频率f=150 kHz,匹配变压器变比为10∶1。根据功率要求,按整流输出电压为500 V计算,则输出电流为200 A。考虑到安全裕量,选取整流二极管模块DF200AA120-160。折算到次级的负载电阻为0.25赘,取品质因数Q=10,则由Q=ωL/R,ω=2πf,f=150 kHz,可得次级电感L=2.65滋H,电容C=0.425μF。逆变器开关器件选择为IVT=300~400 A,UVD=1 075 V。逆变器选1.2 kV/400 A的FF400R12KS4型IGBT模块作为功率开关器件。IGBT驱动电路选取专用驱动功率IGBT/MOSFET的集成芯片IXDD430,可在较高的频率下工作,提供高达30 A的峰值输出电流。
4.2实验波形
图4a示出脉冲分配模块的输入波形与输出波形;图4b示出同桥臂上下开关管的死区驱动波形。
5结论
倍频感应加热电源数字化控制系统充分利用了DSP和CPLD的高速运算能力和丰富的片内外资源,能实时、自动地跟踪负载谐振频率。该控制方法具有抗干扰能力强,处理灵活,开关损耗小的优点,在工业控制中具有广阔的应用前景。
汽车电子系统日益复杂,尤其在48V架构、ADAS与电控系统普及的当下,对瞬态电压抑制器(TVS)的功率密度、高温耐受性及小型化提出了严苛挑战。传统大功率TVS往往体积庞大,难以适应紧凑的ECU布局。威世科技(Vishay)日前推出的T15BxxA/T15BxxCA系列PAR® TVS,以创新封装与卓越性能直面行业痛点,为下一代汽车设计注入强大保护能力。
韩国半导体巨头SK海力士近日在DRAM制造领域实现重大技术飞跃。据ZDNet Korea报道,该公司首次在其1c制程节点中成功应用6层EUV(极紫外)光刻技术,显著提升了DDR5与HBM(高带宽内存)产品的性能、密度及良率,进一步巩固其在先进内存市场的领导地位。
半导体封测巨头日月光投控最新财报显示,2024年7月公司实现营收515.42亿元新台币,较6月份环比增长4.1%,与上年同期相比则微降0.1%。若以更能反映国际业务实质的美元计价,7月营收高达17.69亿美元,呈现更强劲的增长势头——环比上升6.5%,同比显著增长11.2%。这一差异突显了新台币汇率波动对账面营收换算带来的影响。
据彭博社8月11日援引知情人士消息,全球动力电池龙头宁德时代(CATL)已正式暂停其位于江西省宜春市的建霞锂矿生产作业,此次停产预计将持续至少三个月。这一重大变动迅速引发锂产业链高度关注。
近日,全球移动芯片两大巨头——中国台湾地区的联发科(MediaTek)与美国的高通(Qualcomm)先后发布了最新一季的财务报告,为洞察消费电子市场动态和半导体产业发展方向提供了重要窗口。两份财报清晰地展现了在智能手机市场增长放缓的背景下,两大巨头正积极寻求多元化突破,竞相布局未来增长引擎。