由微型升压转换器供电的便携式、高保真立体声音频

发布时间:2010-11-6 阅读量:955 来源: 我爱方案网 作者:

  越来越多终端用户渴望其便携式器件除有普通的耳机立体声输出外,还能提供高质量的立体声音频。我们只需看看当今为便携式应用优化的音频放大器的规 格,就会发现这些音频放大器可以轻易地在电阻为8Ω的扬声器中提供1W的功率,并具有卓越的保真性能。前提是放大器的偏置为5V,虽然这对一 般使用2~4节串联锂离子(Li+)电池(6~16.8V)的便携式DVD播放器和笔记本电脑不构成问题,但是对更小的手持设备、多媒体器件如MP3播放 器、智能电话却是一个问题,因为它们在一节工作放电范围内产生2.7~4.2V的锂离子电池中工作。
---图1 显示了一个小型800mA升压转换器对两个最新的音频放大器供电、达到更高功率便携式立体声音频的电路。其中包含侦测电路,当立体声耳机连接上音频插孔 时,该电路从驱动主立体声扬声器自动进行转换。最后,如果电池电压处于合适的限制范围内,它将在升压转换器中使用一个集成的低电量比较器启动音频放大器。

---为了获得所需功率和保真度,首先必须建立音频放大器的功能。图2中的曲线显示了输出功率和输入电压之间的关系。此图表明,通过将偏置电压Vp从3V增加到 5V,所示放大器在高保真条件下(<0.01% THD) 输出功率能力提高了300%。
 

---因此,对于1W单声道设计,必须使用5V电源。然而,单节锂电池供电的便携式产品只有2.7~4.2V,而且电池电源在其放电周期提供3.6V的额定值。
---因此,必须采用电源在所需功率水平上提供5V电压,升压转换器可以轻易将锂离子电池电压转换为所需的5V。
---首先,必须视音频放大器作为负载,以确定升压转换器的功率要求。电源、负载和输出功率给定后,每个放大器中的功耗如下:
---Pd=√2·Rl·Pout/Rl×(2·Vp/π-√2·Rl·Pout/2)
---由 于需要立体声工作,所以功率计算中必须包括2倍的乘数。因此,对于Vp=5V, Rl=8 Ω, 和Pout=1W, Pd =1.183W同样如此。音频放大器的总功耗为3.183W ,这意味着升压转换器的输出功率必须达到或最好超过这个值。NCP1422能在VBAT=3.6V和Vp=5V时达到800mA,此时输出功率为4W,所 以首次检查即可完成。
---锂离子电池的大多数放电周期在 3.6~3.7V之间,所以升压转换器将那里设计为一个起始点。负载电流为Iout= Po/Vp=3.183/5=637mA。因此,必须用以下公式确定平均电感电流来设计电感。
---ILAVG=Iout/(1-D)=Iout/(1-(1-VBAT/Vp))=637/(1-(1-3.6/5))=884mA
---假设电感中存在20%的波纹电流,使用以下公式可以计算所需电感。导电时间tON在NCP1422数据表中的值为0.75μs。
---L=(VBAT×tON)/[2×(0.2×ILAVG)]=3.6×0.75/2×(0.2×884)=7.6μH
---这是个好的起始点。但是,对于本设计,由于输入电压变化不明显,所以进行了几次迭代,且采用带有低ESR值的 6.8μH电感减小更大波纹电流的效应。
---最后,假设纹波电压为50mVpp,输出电容ESR为0.05Ω,通过以下设计公式可确定输出电容C2的值。
---C2=(Iout×tON)/(Vripple-Iout×RESR)=(637×0.75)/(0.05-637×0.05)=26μH
---因此,该设计使用33μF的输出电容。
---除 驱动扬声器外,便携式音频设备必须能驱动立体声耳机,并且轻易地实现由扬声器转到耳机。NCP4896具有集成SE/BTL选择引脚,该引脚可关闭或启用 两个内置放大器中的一个,从而使每个放大器均可驱动一个桥接负载(BTL)、8 Ω扬声器或立体声耳机的一个声道作为一个单端(SE) 32 Ω 负载。图1显示了耳机侦测电路,包括RDET1-3、 CDET和带有一个触点脚的立体声耳机插孔。如果没有耳机,该触点连接到其中一个声道,并在插入耳机插头时打开。RDET1/2 和CDET形成一个简单的反跳电路,而且如果无耳机插入插孔,RDET3将HP_DET信号拉低。
---最后,NCP1422具有一个集成电池电压过低侦测器。当存在电池且能够驱动音频放大器时,可使用此功能启动这些放大器。如果电池电量较低或者电源断开时,该侦测器也将自动关闭音频放大器。电池过低输出(LBO) 信号直接连接到NCP4896的关断引脚。
---三 个集成电路所占面积为6mm2。所有外部元件(不包括插孔)所占面积约为32mm2。功率段(NCP1422、 L、 C1/2) 所占面积约为 14.5mm2,带阻塞电容(Co1/2)的音频放大器所占面积约为7.5mm2,而其余所有无源器件所占面积约为10mm2。
---本 文所建议的设计让设计人员将大功率、高质量的立体声音频添加到他们现有的手持器件中,而不需要串联额外的电池。这也利用了每个集成电路的一些内置特性来消 除外部支持电路的需要。最后,功率和音频段没有占据很多空间,而且由于它们彼此分离,电路板设计人员有足够的灵活性将解决方案用于现有的平台之中。

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"