发布时间:2010-11-4 阅读量:1623 来源: 我爱方案网 作者:
本设计是用电容传感器按钮(PCB圆形或方形垫片)替代机电开关。PIC12CXXX MCU 非常适合于这种应用,用少量元件就可设计一种价廉的全电子开关。此方法采用一个简单的RC延迟电路(图1),当按传感器时其时间常数发生变化。
为了读出传感器的状态,微控制器必须执行如下两步(图2和图3):
1:改变输出状态,从"0"到"1"(写操作-Twr)
2:读输入状态(读操作-Trd)
假若读操作的结果是"0",这意味着传感器被按。为手指电容串联连接到电容器C,使电路的时间常数较大。
因为为手指电容小,Twr和Trd之间的间隔时间小于1~2μs,所以建议PIC12CXXX内部时钟用4MHz。
在图4硬件电路图中包含两个传感器按钮。其技巧是对于读传感器SB0:GP0设置为输入,GP1设置为输出;而对于读SB1:GP0设置为输 出,GP1设置为输入。GP4,5连接至LED,指示传感器按钮的状态,PIC12C508其他引脚在此不讨论,它们可用做为SYNCRO输入和 TRIAC DRIVER输出。
必须调节电阻器R1的值,它确定按钮的灵敏度。电容器C1和C2的值不是太重要。建议用与微控制器输入相同类型的,具有相等的输入阻抗。
软件流程示于图5。
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。
据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。
在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。
根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。
随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。