发布时间:2010-10-19 阅读量:1020 来源: 发布人:
电源子系统目前正在越来越多地集成到整个系统中。电源系统已经从单独的"必不可少的危险装置"转变成可监控的子系统。当今的系统已经开始将电源子系 统视为可控制的外设来对待。这些系统可控制的电源子系统可以实现诸多优势,如节电、排序及裕度调整等。然而,系统设计人员与电源设计人员必须创建他们自己 的用户方案,因为尚无任何行业标准作为指导。随着最近对数控电源解决方案的重视,拥有面向电源子系统的标准化系统通信解决方案变得更加重要。新的 PMBus(电源管理总线)、通信协议已经开发成功,用于系统与电源子系统之间的主板和支架 (board-and-shelf) 通信。本文讨论了使用 PMBus 时的设计要求。还将举例讨论标准的电源子系统通信解决方案,从而使我们轻松了解 PMBus 的优势。
电源解决方案的通信
SMBus 是第一批电源子系统通信行业标准中的一个。组织将该总线定义为智能电池系统 (Smart Battery System,SBS) ,即"存取总线 (Access bus) 的扩展。"存取总线基于具有地址限制的 I2C 总线之上。SMBus 解决方案定义了多主机协议,以满足电池管理要求。多主机要求是因为系统主机及电池会在不同时间进入主机状态。目标是拥有这样的系统:能够由系统控制智能电 池的电极 (pole),但是仍然允许电池"请求"帮助和配置充电器。该定义还包括"总线礼节 (bus etiquette)",如总线 hog 限制及其他超时情况 (time-out)。该协议还解决了许多用户问题,如用户在没有系统通知的情况下进行的自发的电池断路。为了强化协议,还提供了数据包纠错 (Packet Error Checking)。该选项在每个通信数据包末尾包含一个单字节代码 PEC。PEC 是一个 8 位 CRC(循环冗余校验)。
本地电源通信当前使用的另一个标准是智能平台管理接口 (IPMI)。虽然不是为电源通信而专门设计,但在和电源管理相关的许多方面 IPMI 都有用到。与 SMbus 一样,IPMI 也是基于 I2C 的,但是只支持主机模式写入 (Master Mode Write) 而非重启来更改数据总线方向。IPMI 还比 SMBus 进行更多的会话。设备需要请求信息或发送响应。通信数据包的第一部分是连接报头。该部分包括设备地址。该设备将接收数据包与信息,以识别数据包的功能。数 据包的第二部分首先是发送数据包的设备地址,然后是命令和数据。每个段的最后部分是校验和,以帮助检测通信问题。
PMBus 特殊利益集团 (SIG) 已经选择将 SMBus 1.1 作为通信协议使用。作为决策的一部分,PMBus SIG 加入了 SBS 组织。除了公共总线之外,电源与电池管理之间还有许多共同利益。PMBus 确实通过采用单个主机简化了协议。
PMBus 1.0 | SMBus 1.1 | IPMI 1.5 | |
通信类型 | 来源于 I2C,SMBus 1.1 单个主机 | 来源于 I2C,10KHz 到 100KHz 时钟 | 来源于 I2C,只支持 I2C 主机写入操作 |
错误检测 | 可选 PEC | 可选 PEC | 校验和 |
当前规范版本 | V 1.0 | V 2.0 | V 2.0 |
告警方式 | SMBAlert | SMBAlert,主机通知协议 (Host Notification Protocol) | 到事件接收器的事件通知 |
用于两字节传输与错误检测的总线流量 | 6 字节 | 6 字节 | 7 字节请求9 字节响应总共 16 字节 |
主机设备可能有多个,但是我们将 PMBus 电源设备定义为"从属"。PMBus 利用 SMBus 告警线路向主机发送信号,通知电源设备需要注意。SMBus Alert 通常不用于电池组 (battery pack) 应用程序中。电池应用程序已经关闭了多主机方法和用于主机通知的电池广播。当 PMBus 设备宣布 PMBus 告警线路之后,该设备将确认 PMBus 告警响应地址 (ARA)。当找到 ARA 之后,告警从属设备将把其地址以接收字节顺序放置在数据字段中。PMBus SIG 已经选择 ARA 方法来降低与主机通知相关的复杂性及相应成本。
PMBus 规范还包括用于每个从设备的可选控制信号 PMBus Control。这个 Control 信号可启用或禁用电源转换器的输出。使用此控制信号的系统需要一个专用的连接,将主机连接至各个从设备或连接至需要这一控制级别的从设备组。尽管这肯定会 增加至电源管理的信号走线,但是在需要快速关断的系统中可能会需要此接口。
另一个 PMBus 问题是到设备组的通信(但不是同时到所有设备)。例如,如果系统需要同时启动三个电源转换器,则所有三个转换器都必须接收到同一个命令,以便支持它们各自 的输出。在一个通信包内使用重复的启动可以执行此功能。每个设备被逐个单独寻址,但是设备间的通信不会发送停止位。当配置完所有设备之后,再发送停止位, 以便"触发"该操作。另一种方法是使用 PMBus Control行,以便一次性启用所有电源上的输出。
隔离通信
在某些电源应用中,通信线路必须跨越隔离边界。图 1 显示了适用于双向通信线路的光隔离电路。这种方法可用于 PMBus 数据或时钟线路。PMBus 数据线路是双向的,因为它是用于 SMBus 或 IPMI 的同一条线路。即使 IPMI 只使用主机写入 (Master Write) 模式,从设备也必须知道该数据,因此这就要求数据是双向的。
其他接口线路也可能是双向的。用于所有三条总线的时钟线路可能需要是双向的。如果需要从设备进行时钟伸展,则时钟线路是双向的。当从设备需要更多时间来接 收数据位时,或在其他情况中,需要时间以确定是否应知道命令时,会出现时钟伸展。在跨越隔离边界的多主机设计中,时钟线路始终是双向的。
SMBAlert 线路和 PMBus Control 线路都不是双向的。从设备控制 SMB 告警线路,不需要知道其他设备是否正在向某些设备发出警报。当主机设备已经知晓告警状态,告警的从设备将使 SMB 告警线路进入工作状态。PMBus Control 线路将主机设备连接到一个或多个从设备上,它不是双向总线。
同步降压型 PMBus 示例
2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。
2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。
2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。
2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。
2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"