IGBT的工作原理

发布时间:2010-10-12 阅读量:1224 来源: 发布人:

        IGBT 的开关作用是通过加正向栅极电压形成沟道,给 PNP 晶体管提供基极电流,使 IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使 IGBT 关断。 IGBT 的驱动方法和 MOSFET 基本相同,只需控制输入极 N 一沟道 MOSFET ,所以具有高输入阻抗特性。  

        当 MOSFET 的沟道形成后,从 P+ 基极注入到 N 一层的空穴(少子),对 N 一层进行电导调制,减小 N 一层的电阻,使 IGBT 在高电压 时,也具有低的通态电压。 

IGBT 的工作特性包括静态和动态两类: 

1 .静态特性 IGBT 的静态特性主要有伏安特性、转移特性和 开关特性。  

        IGBT 的伏安特性是指以栅源电压 Ugs 为参变量时,漏极电流与 栅极电压之间的关系曲线。输出漏极电流比受栅源电压 Ugs 的控 制, Ugs 越高, Id 越大。它与 GTR 的输出特性相似.也可分为饱和 区 1 、放大区 2 和击穿特性 3 部分。在截止状态下的 IGBT ,正向电 压由 J2 结承担,反向电压由 J1 结承担。如果无 N+ 缓冲区,则正反 向阻断电压可以做到同样水平,加入 N+ 缓冲区后,反向关断电压只 能达到几十伏水平,因此限制了 IGBT 的某些应用范围。  

        IGBT 的转移特性是指输出漏极电流 Id 与栅源电压 Ugs 之间的 关系曲线。它与 MOSFET 的转移特性相同,当栅源电压小于开启电 压 Ugs(th) 时, IGBT 处于关断状态。在 IGBT 导通后的大部分漏极电 流范围内, Id 与 Ugs 呈线性关系。最高栅源电压受最大漏极电流限 制,其最佳值一般取为 15V 左右。  

        IGBT 的开关特性是指漏极电流与漏源电压之间的关系。 IGBT 处于导通态时,由于它的 PNP 晶体管为宽基区晶体管,所以其 B 值 极低。尽管等效电路为达林顿结构,但流过 MOSFET 的电流成为 IGBT 总电流的主要部分。此时,通态电压 Uds(on) 可用下式表示 

Uds(on) = Uj1 + Udr + IdRoh ( 2 - 14 ) 

式中 Uj1 —— JI 结的正向电压,其值为 0.7 ~ IV ; 

Udr ——扩展电阻 Rdr 上的压降; 

Roh ——沟道电阻。 

通态电流 Ids 可用下式表示: 

Ids=(1+Bpnp)Imos (2 - 15 ) 

式中 Imos ——流过 MOSFET 的电流。 

由于 N+ 区存在电导调制效应,所以 IGBT 的通态压降小,耐压 1000V 的 IGBT 通态压降为 2 ~ 3V 。 

IGBT 处于断态时,只有很小的泄漏电流存在。 

2 .动态特性 IGBT 在开通过程中,大部分时间是作为 MOSFET 来运行的,只是在漏源电压 Uds 下降过程后期, PNP 晶体 管由放大区至饱和,又增加了一段延迟时间。 td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间 ton 即为 td (on) tri 之和。漏源电压的下降时间由 tfe1 和 tfe2 组成,如图 2 - 58 所示 
 

此主题相关图片如下:
 

IGBT 在关断过程中,漏极电流的波形变为两段。因为 MOSFET 关断后, PNP 晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间, td(off) 为关断延迟时间, trv 为电压 Uds(f) 的上升时间。实际应用中常常给出的漏极电流的下降时间 Tf 由图 2 - 59 中的 t(f1) 和 t(f2) 两段组成,而漏极电流的关断时间 

t(off)=td(off)+trv 十 t(f) ( 2 - 16 ) 

式中, td(off) 与 trv 之和又称为存储时间
相关资讯
TP-Link芯片业务战略收缩:WiFi 7研发受阻与全球合规挑战

2025年6月12日,TP-Link外销主体联洲国际(TP-Link Systems)位于上海张江的WiFi芯片部门启动重大裁员,从通知到离职手续仅用半天完成,涉及算法、验证、设计等核心岗位员工,仅保留少数成员。公司提供N+3的高额补偿方案,远高于中国法定的N+1标准,被视为当前裁员潮中的“清流”。行业分析指出,此次调整主要针对WiFi前端模块(FEM) 研发线,而非全面退出芯片领域。FEM作为连接芯片与天线的关键组件,其研发投入缩减与WiFi 7芯片量产进度延迟及成本控制压力直接相关。

DDR4内存现十年罕见价格倒挂,产业链急备货应对停产危机

2025年6月全球存储市场遭遇剧烈波动,DDR4内存现货价格单日暴涨近8%,创下近十年最大单日涨幅。据DRAMeXchange数据显示,截至6月13日,DDR4 8Gb(1G×8)3200颗粒均价飙升至3.775美元,单周涨幅达38.27%,本季度累计涨幅更突破132%。反常的是,DDR4价格竟反超新一代DDR5,形成罕见“价格倒挂”现象,业界直呼“十年未遇”。

三星面临2nm工艺成本压力,供应链策略或转向中国供应商

全球半导体代工产业正面临先进制程的经济性挑战。三星电子在推进Exynos 2600处理器的2nm GAA工艺量产时,遭遇显著成本压力。据行业信息显示,其原型芯片试产阶段的晶圆制造成本同比增加约40%,当前良率区间为30%-40%,远低于70%的盈亏平衡点。若无法在今年底实现良率突破,Galaxy S26系列的处理器单颗成本将比现行5nm芯片高出约三倍。

OLED显示器面板市场逆势增长,电竞需求与韩系厂商主导2025年新高点

2025年全球OLED显示器面板市场迎来爆发性增长。据TrendForce集邦咨询最新数据,尽管宏观经济承压,但该品类出货量预期从280万片大幅上调至340万片,年增长率由40%升至69%,连续第二年实现三位数级增长(2024年增幅达132%)。这一逆势增长的核心驱动力源于两大因素:电竞市场的强劲需求与韩系面板厂商的战略重心转移。

赋能5G车联!艾为电子发布超低插损双通道车规射频开关解决方案

在汽车智能化、网联化发展势不可挡的时代背景下,稳定、高速的车载通信系统成为刚需。作为国内领先的IC设计企业,艾为电子洞悉市场趋势,依托深厚的射频技术积淀,正式面向全球市场推出两款高性能车规级射频开关产品:AW13612PFDR-Q1 与 AW12022TQNR-Q1。这两款产品严格遵循车规AEC-Q100标准认证,专为应对汽车电子严苛的振动、冲击、宽温度范围(-40℃至105℃)工作环境而设计,工作频率覆盖0.1GHz至5.925GHz,完美适配4G LTE、5G NR、C-V2X等主流车载通信频段。其核心使命是为车载通信模块(如5G T-Box)、智能座舱系统等提供高可靠、低损耗的信号路由解决方案,保障车辆与外界信息的高速、稳定传输。