直流充电桩充电模块的技术要求与功率器件选型

发布时间:2024-04-11 阅读量:421 来源: 我爱方案网 作者: wenwei

【导读】随着新能源汽车技术的快速发展,终端应用渗透率正迅速提高,在可预见的未来,整个新能源汽车市场的规模将会持续扩大,迈向规模化、高质量发展阶段。充电桩作为新能源汽车产业链的重要一环,加快充电桩配套设施的建设和完善对于缓解补电焦虑,推动电动汽车更深层次的普及至关重要。为了适应用户快速、稳定、安全的充电需求,提升充电桩的功率等级和效率是其发展的主流方向。充电模块是新能源汽车直流充电设备的核心部件,它的性能直接影响直流充电设备的整体充电效率,同时关系到充电安全等问题。快包分析师总结了6条充电模块的技术要求,同时,针对充电模块的应用场景推荐上海贝岭的高压IGBT和MOSFET。


充电模块在直流充电桩中起到对输入交流电整流滤波、升压稳压(控制、转换)等作用,充电模块的功率和数量,决定了直流充电桩的输出功率。其核心技术在于电力电子功率变换电路、拓扑技术创新能力、嵌入式软件实时控制算法的可靠性、电路设计的安全性及大功率散热技术的结构设计能力和高功率密度的集成化能力。


直流充电桩系统框图.png

直流充电桩系统框图(图源:上海贝岭)


直流充电模块的功率回路由AC/DC、DC/DC两部分组成。AC/DC部分连接电网侧,用于整流和功率因素校正;DC/DC部分输出可调直流电压,满足不同类型电池的充电需求。


典型的单向直流充电模块的拓扑结构如下图所示。AC/DC部分采用三相维也纳PFC,该拓扑可以有效降低功率器件电压应力,开关频率较高,有效降低磁性器件体积,提升系统的功率密度。DC/DC部分采用原边串联、副边交错并联的LLC拓扑,可以实现原边ZVS和副边的ZCS,降低系统损耗,提升充电效率。


直流充电模块典型拓扑结构.png

直流充电模块典型拓扑结构(图源:上海贝岭)


随着V2G、V2X等技术的发展,直流充电桩需要实现能量的双向流动,助力新能源行业更高质量发展。典型的双向拓扑结构如下图所示,前后级均可使用1200V的功率器件。此应用中,高压MOSFET将会展现出优异的器件特性。


双向直流充电模块典型拓扑结构.png

双向直流充电模块典型拓扑结构(图源:上海贝岭)


器件选型方案


针对直流充电桩领域,上海贝岭可提供完整的芯片选型解决方案,覆盖功率链和信号链等众多产品,产品型号完善、性能优异。包含IGBT、MOSFET等全系列产品,为高可靠直流充电模块设计提供助力。


(1)高压IGBT选型推荐


该系列IGBT采用先进的沟槽栅场截止型(T-FS)技术,具有低饱和电压、优化的开关性能和低栅极电荷QG的特点。适用于光伏、UPS、BOOST电路和高频开关电路应用场景。针对前级AC/DC部分推荐IGBT型号:BLG40T65FDK-F、BLG50T65FDKA-F、BLG60T65FDK-F、BLG75T65FDK-F。


IGBT.png


优势特点


  ○ 快速切换

  ○ 正温度系数

  ○ 快恢复反并联二极管

  ○ RoHS产品


(2)高压MOSFET选型推荐


BLS65R041F是采用先进的超级结技术制成的硅N 沟道增强型 MOSFET,可降低导通损耗,提高开关性能。该晶体管适用于开关电源、高速开关和通用应用。


BLS65R041F.png


优势特点


  ○ 快速切换

  ○ 100%雪崩测试

  ○ 改进的 dv/dt 能力

  ○ RoHS 产品


BLC16N120是一种N沟道增强型平面MOSFET,采用革命性的半导体材料碳化硅,具有导通电阻低、电容和栅极电荷低、开关性能优越等优点。与硅相比,该器件可以为电力电子系统应用提供更高的效率、更快的操作频率和紧凑的系统尺寸。


BLC16N120.png


  优势特点


  ○ 革命性的半导体材料-碳化硅

  ○ 高阻塞电压,低导通电阻

  ○ 反向恢复率低的快速本征二极管

  ○ 开关损耗低

  ○ 100%雪崩测试

  ○ RoHS产品



即刻扫码!获取高压IGBT和MOFET应用方案

即刻扫码!获取高压IGBT和MOFET应用方案.png



充电模块的技术要求


(1)宽输出电压


国网发布2017版《电动汽车充电设备供应商资质能力核实标准》指出直流充电机输出电压范围为200V~750V,恒功率电压区间至少覆盖400V~500V和600V~750V。随着电动汽车续航里程的增加,以及车主对缩减充电时间的愿望,大功率充电即350KW,1000V将成为必然的发展方向。


(2)宽输入电压


市场主流模块的输入电压范围为380±20%(305~456VAC),频率范围为45~65Hz。


(3)高频化


目前前级PFC的开关频率在40~60KHZ之间,后级移相全桥固定频率均在100KHZ以下,而全桥LLC的主谐振点频率也在100KHZ以下。随着单机模块功率的加大,而体积又不能成比例增大的情况下,不管是前级PFC还是后级的DC-DC,只有进一步增加开关频率才能实现增大功率密度。


(4)高效率


市场上所有厂家的模块,基本上峰值效率在95%到96%左右。随着98%超高效率技术和宽禁带器件在通信电源市场的成熟,从技术角度考虑,将目前的充电桩模块效率提升到98%是完全可能的。但从投资回报率考虑,效率为98%充电模块毫无市场竞争力,因此,只有等到碳化硅和氮化镓等器件平民化之后,充电桩超高效率的模块才能商业化。


(5)散热方式


目前市场上的模块以强制风冷的散热方式为主,和自然冷却相比,强制风冷散热更快、效率更高。但风机质量和寿命将会制约整机模块的寿命。


(6)功率密度


目前以15KW为主流模块的功率密度是2.0W/cm3。未来,为了满足不同场景充电的需求,尽可能做出超高功率密度的模块,这样可以使体积更紧凑,节省占地面积。


相关资讯
芯片巨头发出预警!工业和移动领域芯片需求短期内保持疲软

工业和移动领域芯片需求短期内保持疲软

汽车继电器选型指南

继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。而汽车继电器是汽车中使用的继电器,该类继电器切换负载功率大,抗冲、抗振性高。汽车中的电源多用12V,线圈电压大都设计为12V。由于是蓄电池供电、电压不稳定; 环境条件恶劣,吸动电压V≤60%VH(定额工作电压);线圈过电压允许达1.5VH。线圈功耗较大,一般为1.6~2W,温升较高。环境要求相当苛刻:在发动机舱,环境温度范围要求为-40℃~125℃,其他位置环境温度范围为-40℃~85℃;在发动机舱里使用的继电器要能经受砂尘、水、盐、油的侵害;振动、冲击相当苛刻。

电位器的选型技巧与关键技术参数

电位器具有一系列优势,包括设计简单、价格低廉、电阻范围大、操作简便和技术成熟。它们作为可靠的器件,在电子和电气系统中对线性或旋转运动进行电压控制、测量和精确感应。在实际应用中,我们需要了解电位器的技术参数,以便正确选型和使用,确保电路的正常运行。

Transphorm与伟诠电子合作推出新款集成型SiP氮化镓器件

该SiP系列现已增至三款器件,均使用了Transphorm的SuperGaN,为支持新一代适配器和充电器拓展了功率等级

血氧仪无缝替代的元器件选型方案

全球性公共卫生事件呈现多发态势,引发了社会各界对个人健康及公共卫生问题的深度反思和广泛关注。如何迅速、高效地了解人体健康状况,以确保个人身体健康,成为一大焦点问题。家庭医疗电子设备,以其便捷的操作和智能化的检测手段,使人们能迅速直观地判断自身健康状况,因此受到了大众的青睐。血氧仪采用非介入的方式测量或连续监测动脉血液中的氧饱和度,以确保血液中存在足够的氧,这种设备常用于处在麻醉状态的呼吸道疾病患者、新生儿以及重症患者。