基于USB接口ID读卡器的设计

发布时间:2011-03-21 阅读量:493 来源: 发布人:

中心议题
    *基于USB接口ID读卡器的设计
解决方案
    *采用内嵌USB接口的单片机
    *采用EM4095设计USB接口ID读卡器
    *采用一种新的解码技术

1 引言
 
USB接口ID读卡器是射频识别 RFID(Radio Frequency Identification)在125 kHz的具体应用,适用于网吧管理、会员系统、考勤消费发卡器、身 份识别前端等。一般的USB接口ID读卡器大多采用射频接收模块和嵌入式微控制器,但成本高,同时解码程序采用定时查询或监测信号边沿状态的方法进行解 码,这些解码方法对天线载波频率以及定时准确度要求较高,当载波稍微偏离规定范围时将不能正确读卡。为降低产品的成本同时提高解码的速度、准确率、敏感度 等,笔者创新采用内嵌USB接口的单片机和EM4095设计USB接口ID读卡器,同时介绍一种新的解码技术,使得载波频率偏移不影响解码,而且无需检测 信号的边沿状态,能够更可靠、快速读卡。

2 系统总体框架及硬件电路设计

2.1 系统总体框架
    
USB接口的125 kHz ID读卡器主要包括基于SN8P2201单片机的主控模块、基于EM4095的射频模块、通信模块(USB)、外部时钟、光显示模块(LED)、声音提示模块(蜂鸣器)、电源模块、天线,如图l所示。


图1 系统总框架图

ID读卡器工作过程:USB接通后,红色LED灯亮,伴随蜂鸣器鸣叫,表明读卡器准备就绪。若1 min内无ID卡靠近读卡器,读卡器将自动进入睡眠状 态,此时红色LED灯自动熄灭,绿色LED灯点亮。当有ID卡接近读卡器时,读卡器自动激活,绿色LED灯熄灭,红色LED灯点亮。读卡器成功读取ID卡 号后,蜂鸣器呜叫,同时数据通过USB传输至PC机。只需打开.txt文件,就可轻松接收数据,无需任何上位机。

2.2 系统硬件电路设计

2.2.1 主控和通信模块电路
    
主控和通信模块电路如图2所示。SONIX单片机SN8P2201的P1.0、P1.1、P0.0引脚分别控制射频器件EM4095工作状态、接收解码的同步时钟、接收解调数据。


图2 主控和通信模块电路

SN8P2201引脚5连接复位电路,电阻R6和电容C8组成基本RC复位电路。该复位电路在系统上电时能够为复位引脚提供一个缓慢上升的复位信号,该 复位信号上升速度低于VDD的上电速度,从而为系统提供合理复位时序,当复位引脚检测到高电平时,系统复位结束,进入正常工作状态;对于电源异常情况,二 极管正向导通使C1快速放电并与VDD保持一致,避免复位引脚持续高电平,系统无法正常复位;R7是必不可少的限流电阻。 
    
通信电路USB,SN8P2201的D+、D一引脚只接适当电容和电阻,就可与单片机内部数据进行USB通信,电路简单。需注意的是:VREG和GND之间连接1μF电容有助于3.3 V稳压器稳定输出,应尽可能靠近SN8P2201放置。

2.2.2 射频收发电路设计
    
射频器件EM4095通过天线连续发射射频载波信号,为电子标签提供能量,激活电子标签;调制发射信号,将数据通过天线传送给电子标签;通过天线接收电子标签发射信号,并解调所接收的信号,从而得到电子标签中的数据,传送给单片机做进一步处理。图3为射频收发电路。


图3 射频收发电路

LA(天线电感值)、C4、C5、C9、C10和C11组成LC串联谐振天线,谐振频率为其中C0=C4||C10||C11+C5||C9。天线的工作电流与谐振电路Q值有关,可在天线线圈LA上并联一只电阻,调节Q值。
    
EM4095的DEMOND_IN引脚输入AM信号在VCO输出信号的同步控制下被采样,采样输出信号由引脚CDEC外接电容隔直和带通滤波采样(消除 输出中的载频成分、高频和低频噪声)后,经异步比较得到对应的数字信号。接收时,天线感生信号经耦合电容输入引脚DEMOND_IN,该信号与天线驱动器 的输入信号由相位比较器进行相位比较,形成与相位差对应的电压,作为压控振荡器的控制信号,最终锁定天线发射信号频率。RDY/CL发射的方波是同天线处 载波的频率相同且同步,通过它传给单片机来计算同步载波的周期数。DEMOND_OUT是AM模块携带的数字信号的输出。SHD=1,EM4095为睡眠 状态。上电后,先为高电平以便初始化,然后为低电平开始发送数据。MOD接地表示只读模式。

2.2.3 其他模块电路设计

系统设计的天线电感值是345μH。天线采用铜制漆包线绕制,漆包线直径为0.29 mm。圆形(内径)直径为2 cm,115圈。读卡器直接通过 USB提供+5 V电压,使单片机和EM4095正常工作,无需外接电源以及额外的5 V稳压器等,这样电源模块电路设计简单,且节省成本。采用 6 MHz晶振为单片机提供外部高速时钟。

2.3 硬件测试
    
EM4095的调试首先检查有无时钟输出。不管电子标签是否靠近读写器,上电后RDY/CLK引脚始终输出时钟信号,否则说明EM4005未开始工作。当 确定输出时钟后,可以把电子标签放在读写器的工作范围内,通过示波器观察SHD引脚的电平是否由高变低,DEMOD_OUT引脚是否有数据波形输出,若有 则说明EM4005工作正常。此时,将RDY/CLK引脚接到示波器,观察其波形,通过调整C4,C10,C11的值,使输出方波的频率接近 125 kHz。 

3 系统软件设计
    
图4为软件设计总体流程。该流程基本说明读卡器工作的全过程。


图4 软件设计总体流程

图5中,wk05是帧头计数器,time是计算RDY/CLK引脚载波的周期数。在中断的第一个下降沿到来时,启动time周期计数。寻找帧头时,只要 time≈64,都将其译码成1。在找到8个连续“1”后,这时下降沿间隔会出现上述3种情况,根据Tag标志位来译码。在找到9个“l”后,才会把译码 的数据送入BUFFER,再经奇偶校验正确后,发送给PC机。


图5 曼彻斯特解码流程

4 结束语
    
USB接口的125 kHz ID读卡器设计简单,成本低廉,而且在程序中就可将USB发送的数据转换成键盘数据,无需任何上位机就可接收数据,操作更 简单。同时软件采用解码方法可以在读曼彻斯特码的同时进行同步解码,速度较快,而且由于对载波频率的变化不敏感,故读卡成功率非常高。
相关资讯
汽车继电器选型指南

继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。而汽车继电器是汽车中使用的继电器,该类继电器切换负载功率大,抗冲、抗振性高。汽车中的电源多用12V,线圈电压大都设计为12V。由于是蓄电池供电、电压不稳定; 环境条件恶劣,吸动电压V≤60%VH(定额工作电压);线圈过电压允许达1.5VH。线圈功耗较大,一般为1.6~2W,温升较高。环境要求相当苛刻:在发动机舱,环境温度范围要求为-40℃~125℃,其他位置环境温度范围为-40℃~85℃;在发动机舱里使用的继电器要能经受砂尘、水、盐、油的侵害;振动、冲击相当苛刻。

电位器的选型技巧与关键技术参数

电位器具有一系列优势,包括设计简单、价格低廉、电阻范围大、操作简便和技术成熟。它们作为可靠的器件,在电子和电气系统中对线性或旋转运动进行电压控制、测量和精确感应。在实际应用中,我们需要了解电位器的技术参数,以便正确选型和使用,确保电路的正常运行。

Transphorm与伟诠电子合作推出新款集成型SiP氮化镓器件

该SiP系列现已增至三款器件,均使用了Transphorm的SuperGaN,为支持新一代适配器和充电器拓展了功率等级

血氧仪无缝替代的元器件选型方案

全球性公共卫生事件呈现多发态势,引发了社会各界对个人健康及公共卫生问题的深度反思和广泛关注。如何迅速、高效地了解人体健康状况,以确保个人身体健康,成为一大焦点问题。家庭医疗电子设备,以其便捷的操作和智能化的检测手段,使人们能迅速直观地判断自身健康状况,因此受到了大众的青睐。血氧仪采用非介入的方式测量或连续监测动脉血液中的氧饱和度,以确保血液中存在足够的氧,这种设备常用于处在麻醉状态的呼吸道疾病患者、新生儿以及重症患者。

低功耗智能燃气表实战方案:华大电子,龙芯和小华半导体套件汇总

随着中国城市化进程的加快、“煤改气”工程的持续推进等因素的加持,我国智能燃气表行业正迎来全面放量的时期,智能燃气表的市场需求快速增长。智能燃气表是在普通燃气表的基础上,增加了通信和计量技术,使得燃气表具备了自动抄表、数据传输、智能监测等多种新功能。作为燃气计量和结算的重要依据,燃气表计量数据采集及抄收的准确性、及时性至关重要,由于燃气的特殊性,要求燃气表有防爆的需求,同时还需要长时间高可靠工作,所以对MCU的稳定性、可靠性都有很高的要求。针对智能燃气表的需求特点,快包分析师推荐华大、龙芯、小华的智能燃气表主控方案。