发布时间:2019-12-19 阅读量:1204 来源: 我爱方案网 作者:
超声传感技术利用超声波的飞行时间(TOF)与管段内介质流速相关,求得超声波顺流和逆流方向传播的时间差,最终来测量和计算流量。此技术在测量宽流速变化范围时非常出色,同时能够处理水和油等液体及空气与甲烷等气体。
基于 TOF 的超声波测量方式是根据上游和下游方向超声信号传播时间的差异来测量流速。超声波在介质流动方向上的传播速度较快,而在逆流动方向时传播速度较慢。无论换能器放置在管道内还是夹在管道外,此项技术均可正常应用。此测量方式要求在两个换能器之间具有直接通路,这就需要仔细选择安装换能器的管道机械构造。如果液体中有气泡出现,此项技术就失去了作用,因为它会对超声波信号造成重大衰减。
由于超声波信号在单一介质与在多种混合介质中的传播速度不同,因此基于 TOF 的超声技术还可用于分析介质成分。超声波流量计配置基于 TOF 的超声波流量计具有两种构造:插入式和外夹式。插入式流量计属于侵入式,其中传感器安装在管道内并与液体发生接触;外夹式流量计属于非侵入式,其传感器安装在管外表面上,可穿透管壁进行声波测量。
插入式呈对角线安装的换能器布局插入式流量计可以呈对角线安装,让传感器直接相对,如上图所示。或者,超声波也可以通过管道表面反射从发射传感器到达接收传感器,如下图所示。在大口径流量计应用中,通常采用两对换能器,以提升性能,解决下下图所示大口径信号衰减较大的问题。
插入式相互反射的换能器布局
下图展示了一种外夹式传感器的配置,由于超声波需要穿透管道材料,因此会发生更大幅度的信号衰减。
超声波流量计面临的一大主要挑战是需要在每小时几升到上万升的大流速范围内保持精度。在一些应用中,另一个挑战是在 0°C 到 85°C 的温度范围内保证流速精度。由于流体中超声波的速度随流体的温度变化而变化,因此在流体温度发生变化时,传播时间的差异会给流速测量带来误差。一般来说,如果不考虑温度,则会产生超过5%的流速计算误差。为了提高精度,系统将需要安装一个温度传感器。不过,设计一种不需要测量温度的检测方法。这种方法需要使用上行和下行传播的绝对时间或 TOF和时间差来计算该介质的流速。
推荐阅读:
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!